1,213 research outputs found
Molecular Organization of Vomeronasal Chemoreception
The vomeronasal organ (VNO) has a key role in mediating the social and defensive responses of many terrestrial vertebrates to species- and sex-specific chemosignals. More than 250 putative pheromone receptors have been identified in the mouse VNO, but the nature of the signals detected by individual VNO receptors has not yet been elucidated. To gain insight into the molecular logic of VNO detection leading to mating, aggression or defensive responses, we sought to uncover the response profiles of individual vomeronasal receptors to a wide range of animal cues. Here we describe the repertoire of behaviourally and physiologically relevant stimuli detected by a large number of individual vomeronasal receptors in mice, and define a global map of vomeronasal signal detection. We demonstrate that the two classes (V1R and V2R) of vomeronasal receptors use fundamentally different strategies to encode chemosensory information, and that distinct receptor subfamilies have evolved towards the specific recognition of certain animal groups or chemical structures. The association of large subsets of vomeronasal receptors with cognate, ethologically and physiologically relevant stimuli establishes the molecular foundation of vomeronasal information coding, and opens new avenues for further investigating the neural mechanisms underlying behaviour specificity.Molecular and Cellular Biolog
Low- and Medium-Dispersion Spectropolarimetry of Nova V475 Sct (Nova Scuti 2003): Discovery of an Asymmetric High-Velocity Wind in a Moderately Fast Nova
We present low-resolution () and medium-resolution ()
spectropolarimetry of Nova V475 Sct with the HBS instrument, mounted on the
0.91-m telescope at the Okayama Astrophysical Observatory, and with FOCAS,
mounted on the 8.2-m Subaru telescope. We estimated the interstellar
polarization toward the nova from the steady continuum polarization components
and H line emission components. After subtracting the interstellar
polarization component from the observations, we found that the H
emission seen on 2003 October 7 was clearly polarized. In the polarized flux
spectrum, the H emission had a distinct red wing extending to km s and a shoulder around km s, showing a
constant position angle of linear polarization \theta_{\rm *}\simeq
155\arcdeg\pm 15\arcdeg. This suggests that the nova had an asymmetric outflow
with a velocity of km s or more, which is six
times higher than the expansion velocity of the ionized shell at the same
epoch. Such a high-velocity component has not previously been reported for a
nova in the `moderately fast' speed class. Our observations suggest the
occurrence of violent mass-loss activity in the nova binary system even during
the common-envelope phase. The position angle of the polarization in the
H wing is in good agreement with that of the continuum polarization
found on 2003 September 26 (--0.6 %), which disappeared
within the following 2 d. The uniformity of the PA between the continuum
polarization and the wing polarization on October 7 suggests that the axis of
the circumstellar asymmetry remained nearly constant during the period of our
observations.Comment: 27 pages, 7 figures, accepted for publication in A
Spectropolarimetry of R Coronae Borealis in 1998--2003: Discovery of Transient Polarization at Maximum Brightness
We present an extended optical spectropolarimetry of R CrB from 1998 January
to 2003 September. The polarization was almost constant in the phase of maximum
brightness, being consistent with past observations. We detected, however,
temporal changes of polarization ( %) in 2001 March and August, which
were the first detection of large polarization variability in R CrB near
maximum brightness. The amplitude and the position angle of the `transient
polarization' were almost constant with wavelength in both two events. There
was a difference by about 20 degrees in the position angle between the two
events. Each event could be explained by light scattering due to short-lived
dust puff occasionally ejected off the line of sight. The flatness of the
polarization against the wavelength suggests that the scatterer is a mixture of
dust grains having various sizes. The rapid growth and fading of the transient
polarization favors the phenomenological model of dust formation near the
stellar photosphere (e.g., within two stellar radii) proposed for the time
evolution of brightness and chromospheric emission lines during deeply
declining periods, although the fading timescale can hardly be explained by a
simple dispersal of expanding dust puff with a velocity of km s
. Higher expansion velocity or some mechanism to destroy the dust grains
should be needed.Comment: 22 pages, 10 figures, accepted for publication in A
Reversing Blood Flows Act through klf2a to Ensure Normal Valvulogenesis in the Developing Heart
Heart valve anomalies are some of the most common congenital heart defects, yet neither the genetic nor the epigenetic forces guiding heart valve development are well understood. When functioning normally, mature heart valves prevent intracardiac retrograde blood flow; before valves develop, there is considerable regurgitation, resulting in reversing (or oscillatory) flows between the atrium and ventricle. As reversing flows are particularly strong stimuli to endothelial cells in culture, an attractive hypothesis is that heart valves form as a developmental response to retrograde blood flows through the maturing heart. Here, we exploit the relationship between oscillatory flow and heart rate to manipulate the amount of retrograde flow in the atrioventricular (AV) canal before and during valvulogenesis, and find that this leads to arrested valve growth. Using this manipulation, we determined that klf2a is normally expressed in the valve precursors in response to reversing flows, and is dramatically reduced by treatments that decrease such flows. Experimentally knocking down the expression of this shear-responsive gene with morpholine antisense oligonucleotides (MOs) results in dysfunctional valves. Thus, klf2a expression appears to be necessary for normal valve formation. This, together with its dependence on intracardiac hemodynamic forces, makes klf2a expression an early and reliable indicator of proper valve development. Together, these results demonstrate a critical role for reversing flows during valvulogenesis and show how relatively subtle perturbations of normal hemodynamic patterns can lead to both major alterations in gene expression and severe valve dysgenesis
Methods for Reducing False Alarms in Searches for Compact Binary Coalescences in LIGO Data
The LIGO detectors are sensitive to a variety of noise transients of
non-astrophysical origin. Instrumental glitches and environmental disturbances
increase the false alarm rate in the searches for gravitational waves. Using
times already identified when the interferometers produced data of questionable
quality, or when the channels that monitor the interferometer indicated
non-stationarity, we have developed techniques to safely and effectively veto
false triggers from the compact binary coalescences (CBCs) search pipeline
No Evidence of Intrinsic Optical/Near-Infrared Linear Polarization for V404 Cygni During its Bright Outburst in 2015: Broadband Modeling and Constraint on Jet Parameters
We present simultaneous optical and near-infrared (NIR) polarimetric results
for the black hole binary V404 Cygni spanning the duration of its 7-day long
optically-brightest phase of its 2015 June outburst. The simultaneous R and
Ks-band light curves showed almost the same temporal variation except for the
isolated (~30 min duration) orphan Ks-band flare observed at MJD 57193.54. We
did not find any significant temporal variation of polarization degree (PD) and
position angle (PA) in both R and Ks bands throughout our observations,
including the duration of the orphan NIR flare. We show that the observed PD
and PA are predominantly interstellar in origin by comparing the V404 Cyg
polarimetric results with those of the surrounding sources within the 7'x7'
field-of-view. The low intrinsic PD (less than a few percent) implies that the
optical and NIR emissions are dominated by either disk or optically-thick
synchrotron emission, or both. We also present the broadband spectra of V404
Cyg during the orphan NIR flare and a relatively faint and steady state by
including quasi-simultaneous Swift/XRT and INTEGRAL fluxes. By adopting a
single-zone synchrotron plus inverse-Compton model as widely used in modeling
of blazars, we constrained the parameters of a putative jet. Because the jet
synchrotron component cannot exceed the Swift/XRT disk/corona flux, the cutoff
Lorentz factor in the electron energy distribution is constrained to be <10^2,
suggesting particle acceleration is less efficient in this microquasar jet
outburst compared to AGN jets. We also suggest that the loading of the baryon
component inside the jet is inevitable based on energetic arguments.Comment: 8 pages, 6 figures, 2 tables. Accepted by Ap
Implications For The Origin Of GRB 051103 From LIGO Observations
We present the results of a LIGO search for gravitational waves (GWs)
associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst
(GRB) whose electromagnetically determined sky position is coincident with the
spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for
short-hard GRBs include compact object mergers and soft gamma repeater (SGR)
giant flares. A merger progenitor would produce a characteristic GW signal that
should be detectable at the distance of M81, while GW emission from an SGR is
not expected to be detectable at that distance. We found no evidence of a GW
signal associated with GRB 051103. Assuming weakly beamed gamma-ray emission
with a jet semi-angle of 30 deg we exclude a binary neutron star merger in M81
as the progenitor with a confidence of 98%. Neutron star-black hole mergers are
excluded with > 99% confidence. If the event occurred in M81 our findings
support the the hypothesis that GRB 051103 was due to an SGR giant flare,
making it the most distant extragalactic magnetar observed to date.Comment: 8 pages, 3 figures. For a repository of data used in the publication,
go to: https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=15166 . Also see
the announcement for this paper on ligo.org at:
http://www.ligo.org/science/Publication-GRB051103/index.ph
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
- …
