5 research outputs found

    An inhomogeneous toy-model of the quantum gravity with explicitly evolvable observables

    Full text link
    An inhomogeneous (1+1)-dimensional model of the quantum gravity is considered. It is found, that this model corresponds to a string propagating against some curved background space. The quantization scheme including the Wheeler-DeWitt equation and the "particle on a sphere" type of the gauge condition is suggested. In the quantization scheme considered, the "problem of time" is solved by building of the quasi-Heisenberg operators acting in a space of solutions of the Wheeler-DeWitt equation and the normalization of the wave function corresponds to the Klein-Gordon type. To analyze the physical consequences of the scheme, a (1+1)-dimensional background space is considered for which a classical solution is found and quantized. The obtained estimations show the way to solution of the cosmological constant problem, which consists in compensation of the zero-point oscillations of the matter fields by the quantum oscillations of the scale factor. Along with such a compensation, a slow global evolution of a background corresponding to an universe expansion exists.Comment: 18 page

    Supplement to bibliography on muscle receptors: Their morphology, pathology, physiology, and pharmacology

    No full text
    corecore