527 research outputs found

    An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry

    Full text link
    [EN] Nowadays, the obtainment of an accurate numerical solution of fixed source discrete ordinates problems is relevant in many areas of engineering and science. In this work, we extend the hybrid Finite Element Spectral Green¿s Function method (FEM-SGF), originally developed to solve eigenvalue diffusion problems, for fixed source problems using as a mathematical model, the discrete ordinates formulation in one energy group with isotropic scattering in slab geometry. This new method, Extended Linear Discontinuous Discrete Ordinates (ELD-SN), is based on the use of neutron balance equations and the construction of a hybrid auxiliary equation. This auxiliary equation combines a linear discontinuous approximation and spectral parameters to approximate the neutron angular flux inside the cell. Numerical results for benchmark problems are presented to illustrate the accuracy and computational performance of our methodology. ELD-SN method is free from spatial truncation errors in S 2 quadrature, and generate good results in the other quadrature sets. This method is more accurate than the conventional Diamond Difference (DD) and Linear Discontinuous (LD) methods, but surpassed by the Spectral Green¿s Function (SGF) method, for quadrature order greater than twoRivas-Ortiz, I.; Dominguez, D.; Hernandez, C.; Iglesias, S.; Escrivá, A. (2019). An Extended Linear Discontinuous Method for One-group Fixed Source Discrete Ordinates Problems with Isotropic Scattering in Slab Geometry. TEMA: Tendências em Matemática Aplicada e Computacional (Online). 20(1):61-76. https://doi.org/10.5540/tema.2019.020.01.061S617620

    A comprehensive study of the thermophysical and rheological properties of ZrO2 based nanofluids as geothermal fluids

    Get PDF
    Geothermal heat pump systems in residential and commercial applications have become popular in many countries over the past years. The heat transfer performance of the ground heat exchangers in these systems has still room for improvement since they have huge influence on the overall efficiency. Likewise, new heat transfer fluids with enhanced properties, known as nanofluids, have been proposed as a potential solution to substitute the conventional working fluids and to improve the heat transfer processes and performance. A reliable and appropriated proposal of nanofluids for a particular application must include a complete fluid dynamic characterization including thermophysical, rheological, heat transfer coefficients, and pressure drops analysis, as well as physical or chemical characterization of the nanomaterial. In this study, a novel proposal of propylene glycol:water (10:90 vol%)-based zirconium oxide nanofluids of different nanoparticle mass concentrations (0.25, 0.50, 0.75, 1.0, and 5.0 wt%) as possible geothermal working fluids and their thermophysical and rheological characterization are performed. Thus, the nanopowder was extensively investigated by means of Transmission Electron Microscopy, High Resolution Transmission Electron Microscopy, X-Ray diffraction, and Ultraviolet visible spectroscopy obtaining the shape, size distribution, d-spacing, electron diffraction pattern, and crystallinity. Then, thermal conductivities, dynamic viscosities, densities, and isobaric heat capacities for base fluid and nanofluids were measured by transient hot wire, rotational rheometry, vibrating tube, and differential scanning calorimetry methods, respectively. Increases in thermal conductivity, dynamic viscosity, and density of the nanofluids up to 2.8%, 13%, and 4.1% were found, respectively, while decreases in heat capacity reached 11% in comparison to the base fluid. Different models and equations were also employed to analyse the experimental data.Agencia Estatal de Investigación | Ref. PID2020-112846RB-C21Agencia Estatal de Investigación | Ref. PDC2021-121225-C21European Cooperation in Science and Technology | Ref. CIG15119Fundação para a Ciência e a Tecnologia | Ref. UIDB/50022/2020Agencia Estatal de Investigación | Ref. PRE2021-097589Xunta de Galicia | Ref. ED481A-2021/284Universidade de Vigo/CISU

    His452Tyr polymorphism in the human 5-HT2A receptor affects clozapine-induced signaling networks revealed by quantitative phosphoproteomics

    Get PDF
    Antipsychotic drugs remain the current standard for schizophrenia treatment. Although they directly recognize the orthosteric binding site of numerous monoaminergic G protein-coupled receptors (GPCRs), these drugs, and particularly second-generation antipsychotics such as clozapine, all have in common a very high affinity for the serotonin 5-HT receptor (5-HTR). Using classical pharmacology and targeted signaling pathway assays, previous findings suggest that clozapine and other atypical antipsychotics behave principally as 5-HTR neutral antagonists and/or inverse agonists. However, more recent findings showed that antipsychotics may also behave as pathway-specific agonists. Reversible phosphorylation is a common element in multiple signaling networks. Combining a quantitative phosphoproteomic method with signaling network analysis, we tested the effect of clozapine treatment on the overall level of protein phosphorylation and signal transduction cascades in vitro in mammalian cell lines induced to express either the human 5-HTR or the H452Y variant of the gene encoding the 5-HTR receptor. This naturally occurring variation within the 5-HTR gene was selected because it has been repeatedly associated with schizophrenia patients who do not respond to clozapine treatment. Our data show that short time exposure (5 or 10 min) to clozapine (10 M) led to phosphorylation of numerous signaling components of pathways involved in processes such as endocytosis, ErbB signaling, insulin signaling or estrogen signaling. Cells induced to express the H452Y variant showed a different basal phosphoproteome, with increases in the phosphorylation of mTOR signaling components as a translationally relevant example. However, the effect of clozapine on the functional landscape of the phosphoproteome was significantly reduced in cells expressing the 5-HTR-H452Y construct. Together, these findings suggest that clozapine behaves as an agonist inducing phosphorylation of numerous pathways downstream of the 5-HTR, and that the single nucleotide polymorphism encoding 5-HTR-H452Y affects these clozapine-induced phosphorylation-dependent signaling networks

    Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

    Get PDF
    This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it is necessary to fix a vector subbundle of the Lie algebroid associated to the Lie groupoid. We also discuss the existence of nonholonomic evolution operators in terms of the discrete nonholonomic Legendre transformations and in terms of adequate decompositions of the prolongation of the Lie groupoid. The characterization of the reversibility of the evolution operator and the discrete nonholonomic momentum equation are also considered. Finally, we illustrate with several classical examples the wide range of application of the theory (the discrete nonholonomic constrained particle, the Suslov system, the Chaplygin sleigh, the Veselova system, the rolling ball on a rotating table and the two wheeled planar mobile robot).Comment: 45 page

    Schwinger boson theory of anisotropic ferromagnetic ultrathin films

    Full text link
    Ferromagnetic thin films with magnetic single-ion anisotropies are studied within the framework of Schwinger bosonization of a quantum Heisenberg model. Two alternative bosonizations are discussed. We show that qualitatively correct results are obtained even at the mean-field level of the theory, similar to Schwinger boson results for other magnetic systems. In particular, the Mermin-Wagner theorem is satisfied: a spontaneous magnetization at finite temperatures is not found if the ground state of the anisotropic system exhibits a continuous degeneracy. We calculate the magnetization and effective anisotropies as functions of exchange interaction, magnetic anisotropies, external magnetic field, and temperature for arbitrary values of the spin quantum number. Magnetic reorientation transitions and effective anisotropies are discussed. The results obtained by Schwinger boson mean-field theory are compared with the many-body Green's function technique.Comment: 14 pages, including 7 EPS figures, minor changes, final version as publishe

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Measurement of isolated photon production in pp and PbPb collisions at sqrt(sNN) = 2.76 TeV

    Get PDF
    Isolated photon production is measured in proton-proton and lead-lead collisions at nucleon-nucleon centre-of-mass energies of 2.76 TeV in the pseudorapidity range |eta|<1.44 and transverse energies ET between 20 and 80 GeV with the CMS detector at the LHC. The measured ET spectra are found to be in good agreement with next-to-leading-order perturbative QCD predictions. The ratio of PbPb to pp isolated photon ET-differential yields, scaled by the number of incoherent nucleon-nucleon collisions, is consistent with unity for all PbPb reaction centralities.Comment: Submitted to Physics Letters
    corecore