1,269 research outputs found

    Formyl Peptide Receptor as a Novel Therapeutic Target for Anxiety-Related Disorders

    Get PDF
    Formyl peptide receptors (FPR) belong to a family of sensors of the immune system that detect microbe-associated molecules and inform various cellular and sensorial mechanisms to the presence of pathogens in the host. Here we demonstrate that Fpr2/3-deficient mice show a distinct profile of behaviour characterised by reduced anxiety in the marble burying and light-dark box paradigms, increased exploratory behaviour in an open-field, together with superior performance on a novel object recognition test. Pharmacological blockade with a formyl peptide receptor antagonist, Boc2, in wild type mice reproduced most of the behavioural changes observed in the Fpr2/3(-/-) mice, including a significant improvement in novel object discrimination and reduced anxiety in a light/dark shuttle test. These effects were associated with reduced FPR signalling in the gut as shown by the significant reduction in the levels of p-p38. Collectively, these findings suggest that homeostatic FPR signalling exerts a modulatory effect on anxiety-like behaviours. These findings thus suggest that therapies targeting FPRs may be a novel approach to ameliorate behavioural abnormalities present in neuropsychiatric disorders at the cognitive-emotional interface

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest

    Full text link
    We conducted a trenching experiment in a mountain forest in order to assess the contribution of theautotrophic respiration to total soil respiration and evaluate trenching as a technique to achieve it. We hypothesised that the trenching experiment would alter both microbial biomass and microbial community structure and that Wne roots (less than 2 mm diameter) would be decomposed within one growing season. Soil CO2 eZux was measured roughlybiweekly over two growing seasons. Root presence and morphology parameters, as well as the soil microbial community were measured prior to trenching, 5 and 15 months after trenching. The trenched plots emitted about 20 and 30% less CO2 than the control plots in the Wrst and secondgrowing season, respectively. Roots died in trenched plots, but root decay was slow. After 5 and 15 months, Wne root biomass was decreased by 9% (not statistically diferent)and 30%, (statistically diVerent) respectively. When wecorrected for the additional trenched-plot CO2 eZux due to Wne root decomposition, the autotrophic soil respiration rose to »26% of the total soil respiration for the Wrst growing season, and to »44% for the second growing season.Soil microbial biomass and community structure was not altered by the end of the second growing season. We conclude that trenching can give accurate estimates of the autotrophic and heterotrophic components of soil respiration, ifmethodological side eVects are accounted for, only

    MicroRNA Expression Analysis: Clinical Advantage of Propranolol Reveals Key MicroRNAs in Myocardial Infarction

    Get PDF
    BACKGROUND: As playing important roles in gene regulation, microRNAs (miRNAs) are believed as indispensable involvers in the pathogenesis of myocardial infarction (MI) that causes significant morbidity and mortality. Working on a hypothesis that modulation of only some key members in the miRNA superfamily could benefit ischemic heart, we proposed a microarray based network biology approach to identify them with the recognized clinical effect of propranolol as a prompt. METHODS: A long-term MI model of rat was established in this study. The microarray technology was applied to determine the global miRNA expression change intervened by propranolol. Multiple network analyses were sequentially applied to evaluate the regulatory capacity, efficiency and emphasis of the miRNAs which dysexpression in MI were significantly reversed by propranolol. RESULTS: Microarray data analysis indicated that long-term propranolol administration caused 18 of the 31 dysregulated miRNAs in MI undergoing reversed expression, implying that intentional modulation of miRNA expression might show favorable effects for ischemic heart. Our network analysis identified that, among these miRNAs, the prime players in MI were miR-1, miR-29b and miR-98. Further finding revealed that miR-1 focused on regulation of myocyte growth, yet miR-29b and miR-98 stressed on fibrosis and inflammation, respectively. CONCLUSION: Our study illustrates how a combination of microarray technology and functional protein network analysis can be used to identify disease-related key miRNAs

    Cardiovascular Applications of Hyperpolarized MRI

    Get PDF
    Many applications of MRI are limited by an inherently low sensitivity. Previous attempts to overcome this insensitivity have focused on the use of MRI systems with stronger magnetic fields. However, the gains that can be achieved in this way are relatively small and increasing the magnetic field invariably leads to greater technical challenges. More recently, the development of a range of techniques, which can be gathered under the umbrella term of “hyperpolarization,” has offered potential solutions to the low sensitivity. Hyperpolarization techniques have been demonstrated to temporarily increase the signal available in an MRI experiment by as much as 100,000-fold. This article outlines the main hyperpolarization techniques that have been proposed and explains how they can increase MRI signals. With particular emphasis on the emerging technique of dynamic nuclear polarization, the existing preclinical cardiovascular applications are reviewed and the potential for clinical translation is discussed

    Importance of Human Leukocyte Antigen (HLA) Class I and II Alleles on the Risk of Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a complex disease of the central nervous system of unknown etiology. The human leukocyte antigen (HLA) locus on chromosome 6 confers a considerable part of the susceptibility to MS, and the most important factor is the class II allele HLA-DRB1*15:01. In addition, we and others have previously established a protective effect of HLA-A*02. Here, we genotyped 1,784 patients and 1,660 healthy controls from Scandinavia for the HLA-A, HLA-B, HLA-C and HLA-DRB1 genes and investigated their effects on MS risk by logistic regression. Several allele groups were found to exert effects independently of DRB1*15 and A*02, in particular DRB1*01 (OR = 0.82, p = 0.034) and B*12 (including B*44/45, OR = 0.76, p = 0.0028), confirming previous reports. Furthermore, we observed interaction between allele groups: DRB1*15 and DRB1*01 (multiplicative: OR = 0.54, p = 0.0041; additive: AP = 0.47, p = 4×10−06), DRB1*15 and C*12 (multiplicative: OR = 0.37, p = 0.00035; additive: AP = 0.58, p = 2.6×10−05), indicating that the effect size of these allele groups varies when taking DRB1*15 into account. Analysis of inferred haplotypes showed that almost all DRB1*15 bearing haplotypes were risk haplotypes, and that all A*02 bearing haplotypes were protective as long as they did not carry DRB1*15. In contrast, we found one class I haplotype, carrying A*02-C*05-B*12, which abolished the risk of DRB1*15. In conclusion, these results confirms a complex role of HLA class I and II genes that goes beyond DRB1*15 and A*02, in particular by including all three classical HLA class I genes as well as functional interactions between DRB1*15 and several alleles of DRB1 and class I genes

    Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation

    Get PDF
    Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC) disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK) and murine double minute (Mdm2) E3 ligase. Growth cone collapse induced by genetic (npc1−/−) or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK)-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1−/− mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism
    corecore