5 research outputs found

    Search for Higgs boson pair production in the..WW * channel using pp collision data recorded at v s=13 TeV with the ATLAS detector

    No full text
    Searches for non- resonant and resonant Higgs boson pair production are performed in the..WW * channel with the final state of.. .j j using 36.1 fb - 1 of protonpv roton collision data recorded at a centre- of- mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence- level observed upper limit of 7.7 pb is set on the cross section for nonresonant production, while the expected limit is 5.4 pb. A search for a narrow- width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on s( pp. X) x B( X. HH) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the StandardModel branching ratios of the H... and H. WW * are assumed

    Search for new phenomena using the invariant mass distribution of same-flavour opposite-sign dilepton pairs in events with missing transverse momentum in√s =13 TeV ppcollisions with the ATLAS detector

    Get PDF
    aJUTS: s We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; MINECO, Spain AND CERCA Programme Generalitat de Catalunya.A search for new phenomena in final states containing an or pair, jets, and large missing transverse momentum is presented. This analysis makes use of proton-proton collision data with an integrated luminosity of , collected during 2015 and 2016 at a centre-of-mass energy with the ATLAS detector at the Large Hadron Collider. The search targets the pair production of supersymmetric coloured particles (squarks or gluinos) and their decays into final states containing an or pair and the lightest neutralino () via one of two next-to-lightest neutralino () decay mechanisms: , where the Z boson decays leptonically leading to a peak in the dilepton invariant mass distribution around the Z boson mass; and with no intermediate resonance, yielding a kinematic endpoint in the dilepton invariant mass spectrum. The data are found to be consistent with the Standard Model expectation. Results are interpreted using simplified models, and exclude gluinos and squarks with masses as large as 1.85 and 1.3 at 95% confidence level, respectively

    Search for heavy ZZ resonances in the l(+) l(-) l(+) l(-) and l(+) l(-) nu(nu)over-bar final states using proton-proton collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a pair of ZZ bosons leading to ++\ell^+\ell^-\ell^+\ell^- and +ννˉ\ell^+\ell^-\nu\bar\nu final states, where \ell stands for either an electron or a muon, is presented. The search uses proton proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb1^{-1} collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider. Different mass ranges for the hypothetical resonances are considered, depending on the final state and model. The different ranges span between 200 GeV and 2000 GeV. The results are interpreted as upper limits on the production cross section of a spin 0 or spin 2 resonance. The upper limits for the spin 0 resonance are translated to exclusion contours in the context of Type I and Type II two-Higgs-doublet models, while those for the spin 2 resonance are used to constrain the Randall Sundrum model with an extra dimension giving rise to spin 2 graviton excitations

    Search for heavy ZZ resonances in the +−+− and +−νν¯ final states using proton–proton collisions at √s = 13 TeV with the ATLAS detector

    No full text
    A search for heavy resonances decaying into a pair of Z bosons leading to +−+− and +−νν¯ final states, where stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb−1 collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider. Different mass ranges for the hypothetical resonances are considered, depending on the final state and model. The different ranges span between 200 and 2000 GeV. The results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, while those for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations
    corecore