178 research outputs found

    SMEI observations of previously unseen pulsation frequencies in γ Doradus

    Get PDF
    Aims. As g-mode pulsators, gamma-Doradus-class stars may naïvely be expected to show a large number of modes. Taking advantage of the long photometric time-series generated by the solar mass ejection imager (SMEI) instrument, we have studied the star gamma Doradus to determine whether any other modes than the three already known are present at observable amplitude. Methods. High-precision photometric data from SMEI taken between April 2003 and March 2006 were subjected to periodogram analysis with the PERIOD04 package. Results. We confidently determine three additional frequencies at 1.39, 1.87, and 2.743 d−1. These are above and beyond the known frequencies of 1.320, 1.364, and 1.47 d−1. Conclusions. Two of the new frequencies, at 1.39 and 1.87 d−1, are speculated to be additional modes of oscillation, with the third frequency at 2.743−1 a possible combination frequency

    Acoustic oscillations in stars near the tip of the red giant branch

    Full text link
    Small amplitude oscillations are observed in red giant branch (RGB) stars. Data on such oscillations are a source of information about the objects, notably about properties of convection in their envelopes and about the systems these objects inhabit. The OGLE-III catalog contains data for about 80 thousand small amplitude variable red giants (OSARGs) in the Large Magellanic Cloud. We want to explain variability in OSARGs as the solar-like oscillation and to associate the peaks in power spectra with frequencies of acoustic modes. We use data on reddening-free magnitudes of the objects and interpret them in terms of stellar physical parameters using tabulated isochrones calculated for ages and composition parameters corresponding to the upper RGB of the LMC. Massive data on the peak frequencies and amplitudes are compared with expectations for stochastically excited oscillations. The frequencies are also compared with those calculated for radial modes in envelope models with parameters taken from the isochrones. In stars close to the tip of the RGB, the peaks in power spectra are found in the 0.1-1.0 μ\muHz range, which is consistent with extrapolation of the frequency-luminosity relation for the solar-like oscillation. The dominant peaks occur close to the first two radial overtones. The increase in amplitude with luminosity is slower than linear. The exponent s=0.9 is similar to what is found from recent analysis of CoRoT data on less luminous red giants. Frequency separations between dominant peaks are found to be smaller by about 20% than calculated separations between these modes. After examining various possibilities, we left this discrepancy unexplained. The small amplitude variability of stars at the RGB tip is likely to be caused by a stochastic excitation of acoustic oscillations, but interpreting of individual peaks in power spectra presents a problem.Comment: Accepted for publication in Astronomy and Astrophysics, 6 pages, 6 figure

    An asteroseismic study of the beta Cephei star 12 Lacertae: multisite spectroscopic observations, mode identification and seismic modelling

    Get PDF
    We present the results of a spectroscopic multisite campaign for the beta Cephei star 12 (DD) Lacertae. Our study is based on more than thousand high-resolution high S/N spectra gathered with 8 different telescopes in a time span of 11 months. In addition we make use of numerous archival spectroscopic measurements. We confirm 10 independent frequencies recently discovered from photometry, as well as harmonics and combination frequencies. In particular, the SPB-like g-mode with frequency 0.3428 1/d reported before is detected in our spectroscopy. We identify the four main modes as (l1,m1) = (1, 1), (l2,m2) = (0, 0), (l3,m3) = (1, 0) and (l4,m4) = (2, 1) for f1 = 5.178964 1/d, f2 = 5.334224 1/d, f3 = 5.066316 1/d and f4 = 5.490133 1/d, respectively. Our seismic modelling shows that f2 is likely the radial first overtone and that the core overshooting parameter alpha_ov is lower than 0.4 local pressure scale heights.Comment: 16 pages, 11 figures, accepted in MNRA

    Multisite spectroscopic seismic study of the beta Cep star V2052 Oph: inhibition of mixing by its magnetic field

    Get PDF
    We used extensive ground-based multisite and archival spectroscopy to derive observational constraints for a seismic modelling of the magnetic beta Cep star V2052 Ophiuchi. The line-profile variability is dominated by a radial mode (f_1=7.14846 d^{-1}) and by rotational modulation (P_rot=3.638833 d). Two non-radial low-amplitude modes (f_2=7.75603 d^{-1} and f_3=6.82308 d^{-1}) are also detected. The four periodicities that we found are the same as the ones discovered from a companion multisite photometric campaign (Handler et al. 2012) and known in the literature. Using the photometric constraints on the degrees l of the pulsation modes, we show that both f_2 and f_3 are prograde modes with (l,m)=(4,2) or (4,3). These results allowed us to deduce ranges for the mass (M \in [8.2,9.6] M_o) and central hydrogen abundance (X_c \in [0.25,0.32]) of V2052 Oph, to identify the radial orders n_1=1, n_2=-3 and n_3=-2, and to derive an equatorial rotation velocity v_eq \in [71,75] km s^{-1}. The model parameters are in full agreement with the effective temperature and surface gravity deduced from spectroscopy. Only models with no or mild core overshooting (alpha_ov \in [0,0.15] local pressure scale heights) can account for the observed properties. Such a low overshooting is opposite to our previous modelling results for the non-magnetic beta Cep star theta Oph having very similar parameters, except for a slower surface rotation rate. We discuss whether this result can be explained by the presence of a magnetic field in V2052 Oph that inhibits mixing in its interior.Comment: 12 pages, 6 figures and 5 tables; accepted for publication in MNRAS on 2012 August 1

    Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars

    Get PDF
    Red giants are evolved stars that have exhausted the supply of hydrogen in their cores and instead burn hydrogen in a surrounding shell. Once a red giant is sufficiently evolved, the helium in the core also undergoes fusion. Outstanding issues in our understanding of red giants include uncertainties in the amount of mass lost at the surface before helium ignition and the amount of internal mixing from rotation and other processes. Progress is hampered by our inability to distinguish between red giants burning helium in the core and those still only burning hydrogen in a shell. Asteroseismology offers a way forward, being a powerful tool for probing the internal structures of stars using their natural oscillation frequencies. Here we report observations of gravity-mode period spacings in red giants that permit a distinction between evolutionary stages to be made. We use high-precision photometry obtained with the Kepler spacecraft over more than a year to measure oscillations in several hundred red giants. We find many stars whose dipole modes show sequences with approximately regular period spacings. These stars fall into two clear groups, allowing us to distinguish unambiguously between hydrogen-shell-burning stars (period spacing mostly about 50 seconds) and those that are also burning helium (period spacing about 100 to 300 seconds).Comment: to appear as a Letter to Natur

    CoRoT's view of newly discovered B-star pulsators: results for 358 candidate B pulsators from the initial run's exoplanet field data

    Get PDF
    We search for new variable B-type pulsators in the CoRoT data assembled primarily for planet detection, as part of CoRoT's Additional Programme. We aim to explore the properties of newly discovered B-type pulsators from the uninterrupted CoRoT space-based photometry and to compare them with known members of the Beta Cep and slowly pulsating B star (SPB) classes. We developed automated data analysis tools that include algorithms for jump correction, light-curve detrending, frequency detection, frequency combination search, and for frequency and period spacing searches. Besides numerous new, classical, slowly pulsating B stars, we find evidence for a new class of low-amplitude B-type pulsators between the SPB and Delta Sct instability strips, with a very broad range of frequencies and low amplitudes, as well as several slowly pulsating B stars with residual excess power at frequencies typically a factor three above their expected g-mode frequencies. The frequency data we obtained for numerous new B-type pulsators represent an appropriate starting point for further theoretical analyses of these stars, once their effective temperature, gravity, rotation velocity, and abundances will be derived spectroscopically in the framework of an ongoing FLAMES survey at the VLT.Comment: 22 pages, 30 figures, accepted for publication in A&

    Solar-like oscillations in low-luminosity red giants: first results from Kepler

    Get PDF
    We have measured solar-like oscillations in red giants using time-series photometry from the first 34 days of science operations of the Kepler Mission. The light curves, obtained with 30-minute sampling, reveal clear oscillations in a large sample of G and K giants, extending in luminosity from the red clump down to the bottom of the giant branch. We confirm a strong correlation between the large separation of the oscillations (Delta nu) and the frequency of maximum power (nu_max). We focus on a sample of 50 low-luminosity stars (nu_max > 100 muHz, L <~ 30 L_sun) having high signal-to-noise ratios and showing the unambiguous signature of solar-like oscillations. These are H-shell-burning stars, whose oscillations should be valuable for testing models of stellar evolution and for constraining the star-formation rate in the local disk. We use a new technique to compare stars on a single echelle diagram by scaling their frequencies and find well-defined ridges corresponding to radial and non-radial oscillations, including clear evidence for modes with angular degree l=3. Measuring the small separation between l=0 and l=2 allows us to plot the so-called C-D diagram of delta nu_02 versus Delta nu. The small separation delta nu_01 of l=1 from the midpoint of adjacent l=0 modes is negative, contrary to the Sun and solar-type stars. The ridge for l=1 is notably broadened, which we attribute to mixed modes, confirming theoretical predictions for low-luminosity giants. Overall, the results demonstrate the tremendous potential of Kepler data for asteroseismology of red giants.Comment: accepted by ApJ Letters, to appear in special Kepler issue. Updated reference

    Close binary stars in the solar-age Galactic open cluster M67

    Get PDF
    We present multi-colour time-series CCD photometry of the solar-age galactic open cluster M67 (NGC 2682). About 3600 frames spread over 28 nights were obtained with the 1.5 m Russian-Turkish and 1.2 m Mercator telescopes. High-precision observations of the close binary stars AH Cnc, EV Cnc, ES Cnc, the δ\delta Scuti type systems EX Cnc and EW Cnc, and some long-period variables belonging to M67 are presented. Three full multi-colour light curves of the overcontact binary AH Cnc were obtained during three observing seasons. Likewise we gathered three light curves of EV Cnc, an EB-type binary, and two light curves of ES Cnc, a blue straggler binary. Parts of the light change of long-term variables S1024, S1040, S1045, S1063, S1242, and S1264 are obtained. Period variation analysis of AH Cnc, EV Cnc, and ES Cnc were done using all times of mid-eclipse available in the literature and those obtained in this study. In addition, we analyzed multi-colour light curves of the close binaries and also determined new frequencies for the δ\delta Scuti systems. The physical parameters of the close binary stars were determined with simultaneous solutions of multi-colour light and radial velocity curves. Finally we determined the distance of M67 as 857(33) pc via binary star parameters, which is consistent with an independent method from earlier studies.Comment: 12 pages, 9 Figures, 13 Table

    CoRoT high-precision photometry of the B0.5 IV star HD 51756

    Get PDF
    OB stars are important constituents for the ecology of the Universe, and there are only a few studies on their pulsational properties detailed enough to provide important feedback on current evolutionary models. Our goal is to analyse and interpret the behaviour present in the CoRoT light curve of the B0.5 IV star HD 51756 observed during the second long run of the space mission, and to determine the fundamental stellar parameters from ground-based spectroscopy gathered with the CORALIE and HARPS instruments after checking for signs of variability and binarity, thus making a step further in mapping the top of the Beta Cep instability strip. We compare the newly obtained high-resolution spectra with synthetic spectra of late O-type and early B-type stars computed on a grid of stellar parameters. We match the results with evolutionary tracks to estimate stellar parameters. We use various time series analysis tools to explore the nature of the variations present in the light curve. Additional calculations are carried out based on distance and historical position measurements of the components to impose constraints on the binary orbit. We find that HD 51756 is a wide binary with both a slow (v sin i \approx 28 km s^-1) and a fast (v sin i \approx 170 km s^-1) early-B rotator whose atmospheric parameters are similar (T_eff \approx 30000 K and log g \approx 3.75). We are unable to detect pulsation in any of the components, and we interpret the harmonic structure in the frequency spectrum as sign of rotational modulation, which is compatible with the observed and deduced stellar parameters of both components. The non-detection of pulsation modes provides a feedback on the theoretical treatment, given that non-adiabatic computations applied to appropriate stellar models predict the excitation of both pressure and gravity modes for the fundamental parameters of this star.Comment: Accepted for publication in Astronomy and Astrophysics on 14/01/2011, 11 pages, 9 figures, 4 table

    Ionization via Chaos Assisted Tunneling

    Full text link
    A simple example of quantum transport in a classically chaotic system is studied. It consists in a single state lying on a regular island (a stable primary resonance island) which may tunnel into a chaotic sea and further escape to infinity via chaotic diffusion. The specific system is realistic : it is the hydrogen atom exposed to either linearly or circularly polarized microwaves. We show that the combination of tunneling followed by chaotic diffusion leads to peculiar statistical fluctuation properties of the energy and the ionization rate, especially to enhanced fluctuations compared to the purely chaotic case. An appropriate random matrix model, whose predictions are analytically derived, describes accurately these statistical properties.Comment: 30 pages, 11 figures, RevTeX and postscript, Physical Review E in pres
    corecore