58 research outputs found

    Instantons for Vacuum Decay at Finite Temperature in the Thin Wall Limit

    Full text link
    In N+1N+1 dimensions, false vacuum decay at zero temperature is dominated by the O(N+1)O(N+1) symmetric instanton, a sphere of radius R0R_0, whereas at temperatures T>>R0−1T>>R_0^{-1}, the decay is dominated by a `cylindrical' (static) O(N)O(N) symmetric instanton. We study the transition between these two regimes in the thin wall approximation. Taking an O(N)O(N) symmetric ansatz for the instantons, we show that for N=2N=2 and N=3N=3 new periodic solutions exist in a finite temperature range in the neighborhood of T∌R0−1T\sim R_0^{-1}. However, these solutions have higher action than the spherical or the cylindrical one. This suggests that there is a sudden change (a first order transition) in the derivative of the nucleation rate at a certain temperature T∗T_*, when the static instanton starts dominating. For N=1N=1, on the other hand, the new solutions are dominant and they smoothly interpolate between the zero temperature instanton and the high temperature one, so the transition is of second order. The determinantal prefactors corresponding to the `cylindrical' instantons are discussed, and it is pointed out that the entropic contributions from massless excitations corresponding to deformations of the domain wall give rise to an exponential enhancement of the nucleation rate for T>>R0−1T>>R_0^{-1}.Comment: 24 pages, 7 figures available upon request, DAMTP-R-94/

    On the origin of thermal string gas

    Full text link
    We investigate decaying D-branes as the origin of the thermal string gas of string gas cosmology. We consider initial configurations of low-dimensional branes and argue that they can time evolve to thermal string gas. We find that there is a range in the weak string coupling and fast brane decay time regimes, where the initial configuration could drive the evolution of the dilaton to values, where exactly three spacelike directions grow large.Comment: 16 pages, 4 figures, v2: references adde

    Back Reaction of Strings in Self-Consistent String Cosmology

    Full text link
    We compute the string energy-momentum tensor and {\bf derive} the string equation of state from exact string dynamics in cosmological spacetimes. 1+1, 2+11+1,~2+1 and DD-dimensional universes are treated for any expansion factor RR. Strings obey the perfect fluid relation p=(γ−1)ρ p = (\gamma -1) \rho with three different behaviours: (i) {\it Unstable} for R→∞ R \to \infty with growing energy density ρ∌R2−D \rho \sim R^{2-D} , {\bf negative} pressure, and Îł=(D−2)/(D−1) \gamma =(D-2)/(D-1) ; (ii){\it Dual} for R→0 R \to 0 , with ρ∌R−D \rho \sim R^{-D} , {\bf positive} pressure and Îł=D/(D−1)\gamma = D/(D-1) (as radiation); (iii) {\it Stable} for R→∞ R \to \infty with ρ∌R1−D \rho \sim R^{1-D} , {\bf vanishing} pressure and Îł=1\gamma = 1 (as cold matter). We find the back reaction effect of these strings on the spacetime and we take into account the quantum string decay through string splitting. This is achieved by considering {\bf self-consistently} the strings as matter sources for the Einstein equations, as well as for the complete effective string equations. String splitting exponentially suppress the density of unstable strings for large RR. The self-consistent solution to the Einstein equations for string dominated universes exhibits the realistic matter dominated behaviour R∌(X0)2/(D−1)   R \sim (X^0)^{2/(D-1)}\; for large times and the radiation dominated behaviour R∌(X0)2/D   R \sim (X^0)^{2/D}\; for early times. De Sitter universe does not emerge as solution of the effective string equations. The effective string action (whatever be the dilaton, its potential and the central charge term) is not the appropriate framework in which to address the question of string driven inflation.Comment: 29 pages, revtex, LPTHE-94-2

    Observational Signatures and Non-Gaussianities of General Single Field Inflation

    Full text link
    We perform a general study of primordial scalar non-Gaussianities in single field inflationary models in Einstein gravity. We consider models where the inflaton Lagrangian is an arbitrary function of the scalar field and its first derivative, and the sound speed is arbitrary. We find that under reasonable assumptions, the non-Gaussianity is completely determined by 5 parameters. In special limits of the parameter space, one finds distinctive ``shapes'' of the non-Gaussianity. In models with a small sound speed, several of these shapes would become potentially observable in the near future. Different limits of our formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical coefficients corrected in Appendix B, discussion on consistency condition revise

    Observational Signatures and Non-Gaussianities of General Single Field Inflation

    Get PDF
    We perform a general study of primordial scalar non-Gaussianities in single field inflationary models in Einstein gravity. We consider models where the inflaton Lagrangian is an arbitrary function of the scalar field and its first derivative, and the sound speed is arbitrary. We find that under reasonable assumptions, the non-Gaussianity is completely determined by 5 parameters. In special limits of the parameter space, one finds distinctive ``shapes'' of the non-Gaussianity. In models with a small sound speed, several of these shapes would become potentially observable in the near future. Different limits of our formulae recover various previously known results.Comment: 53 pages, 5 figures; v3, minor revision, JCAP version; v4, numerical coefficients corrected in Appendix B, discussion on consistency condition revise

    Use of cultivation-dependent and -independent techniques to assess contamination of central venous catheters: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catheters are the most common cause of nosocomial infections and are associated with increased risk of mortality, length of hospital stay and cost. Prevention of infections and fast and correct diagnosis is highly important.</p> <p>Methods</p> <p>In this study traditional semiquantitative culture-dependent methods for diagnosis of bacteria involved in central venous catheter-related infections as described by Maki were compared with the following culture-independent molecular biological methods: Clone libraries, denaturant gradient gel electrophoresis, phylogeny and fluorescence in situ hybridization.</p> <p>Results</p> <p>In accordance with previous studies, the cultivation of central venous catheters from 18 patients revealed that <it>S. epidermidis </it>and other coagulase-negative staphylococci were most abundant and that a few other microorganisms such as <it>P. aeruginosa </it>and <it>K. pneumoniae </it>occasionally were found on the catheters. The molecular analysis using clone libraries and sequencing, denaturant gradient gel electrophoresis and sequencing provided several important results. The species found by cultivation were confirmed by molecular methods. However, many other bacteria belonging to the phyla <it>Proteobacteria, Firmicutes, Actinobacteria </it>and <it>Bacteroidetes </it>were also found, stressing that only a minor portion of the species present were found by cultivation. Some of these bacteria are known to be pathogens, some have not before been described in relation to human health, and some were not closely related to known pathogens and may represent new pathogenic species. Furthermore, there was a clear difference between the bacterial species found in biofilm on the external (exluminal) and internal (luminal) side of the central venous catheter, which can not be detected by Maki's method. Polymicrobial biofilms were observed on most of the catheters and were much more common than the cultivation-dependent methods indicated.</p> <p>Conclusion</p> <p>The results show that diagnosis based on molecular methods improves the detection of microorganisms involved in central catheter-related infections. The importance of these microorganisms needs to be investigated further, also in relation to contamination risk from improper catheter handling, as only in vivo contaminants are of interest. This information can be used for development of fast and more reliable diagnostic tools, which can be used in combination with traditional methods.</p

    Inflation and Braneworlds: Degeneracies and Consistencies

    Full text link
    Scalar and tensor perturbations arising in an inflationary braneworld scenario driven by a single scalar field are considered, where the bulk on either side of the brane corresponds to Anti-de Sitter spaces with different cosmological constants. A consistency relation between the two spectra is derived and found to have an identical form to that arising in standard single-field inflation based on conventional Einstein gravity. The dS/CFT correspondence may provide further insight into the origin of this degeneracy. Possible ways of lifting such a degeneracy are discussed.Comment: 10 page

    Search for supersymmetry in events with large missing transverse momentum, jets, and at least one tau lepton in 20 fb−1 of √s=8 TeV proton-proton collision data with the ATLAS detector

    Get PDF
    A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, at least one hadronically decaying tau lepton and zero or one additional light leptons (electron/muon), has been performed using 20.3fb−1 of proton-proton collision data at √s= 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed in the various signal regions and 95% confidence level upper limits on the visible cross section for new phenomena are set. The results of the analysis are interpreted in several SUSY scenarios, significantly extending previous limits obtained in the same final states. In the framework of minimal gauge-mediated SUSY breaking models, values of the SUSY breaking scale Λ below 63 TeV are excluded, independently of tan ÎČ. Exclusion limits are also derived for an mSUGRA/CMSSM model, in both the R-parity-conserving and R-parity-violating case. A further interpretation is presented in a framework of natural gauge mediation, in which the gluino is assumed to be the only light coloured sparticle and gluino masses below 1090 GeV are excluded

    Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012

    Get PDF
    OBJECTIVE: To provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock," last published in 2008. DESIGN: A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. METHODS: The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. RESULTS: Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≄65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7-9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a PaO (2)/FiO (2) ratio of ≀100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a PaO (2)/FI O (2) 180 mg/dL, targeting an upper blood glucose ≀180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5-10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven "absolute"' adrenal insufficiency (2C). CONCLUSIONS: Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients
    • 

    corecore