408 research outputs found
Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime
The Be X-ray binary EXO 2030+375 was in an extended low luminosity state
during most of 2016. We observed this state with NuSTAR and Swift, supported by
INTEGRAL observations as well as optical spectroscopy with the NOT. We present
a comprehensive spectral and timing analysis of these data here to study the
accretion geometry and investigate a possible onset of the propeller effect.
The H-alpha data show that the circumstellar disk of the Be-star is still
present. We measure equivalent widths similar to values found during more
active phases in the past, indicating that the low-luminosity state is not
simply triggered by a smaller Be disk. The NuSTAR data, taken at a 3-78 keV
luminosity of ~6.8e35 erg/s (for a distance of 7.1 kpc), are well described by
standard accreting pulsar models, such as an absorbed power-law with a
high-energy cutoff. We find that pulsations are still clearly visible at these
luminosities, indicating that accretion is continuing despite the very low mass
transfer rate. In phase-resolved spectroscopy we find a peculiar variation of
the photon index from ~1.5 to ~2.5 over only about 3% of the rotational period.
This variation is similar to that observed with XMM-Newton at much higher
luminosities. It may be connected to the accretion column passing through our
line of sight. With Swift/XRT we observe luminosities as low as 1e34 erg/s
during which the data quality did not allow us to search for pulsations, but
the spectrum is much softer and well described by either a blackbody or soft
power-law continuum. This softer spectrum might be due to the fact that
accretion has been stopped by the propeller effect and we only observe the
neutron star surface cooling.Comment: 11 pages, 6 figures, accepted for publication in A&A (v2 including
language edits
Plasmodium falciparum merozoite surface protein 2: epitope mapping and fine specificity of human antibody response against non-polymorphic domains.
BACKGROUND: Two long synthetic peptides representing the dimorphic and constant C-terminal domains of the two allelic families of Plasmodium falciparum merozoite surface proteins 2 are considered promising malaria vaccine candidates. The aim of the current study is to characterize the immune response (epitope mapping) in naturally exposed individuals and relate immune responses to the risk of clinical malaria.
METHODS: To optimize their construction, the fine specificity of human serum antibodies from donors of different age, sex and living in four distinct endemic regions was determined in ELISA by using overlapping 20 mer peptides covering the two domains. Immune purified antibodies were used in Western blot and immunofluorescence assay to recognize native parasite derivate proteins.
RESULTS: Immunodominant epitopes were characterized, and their distribution was similar irrespective of geographic origin, age group and gender. Acquisition of a 3D7 family and constant region-specific immune response and antibody avidity maturation occur early in life while a longer period is needed for the corresponding FC27 family response. In addition, the antibody response to individual epitopes within the 3D7 family-specific region contributes to protection from malaria infection with different statistical weight. It is also illustrated that affinity-purified antibodies against the dimorphic or constant regions recognized homologous and heterologous parasites in immunofluorescence and homologous and heterologous MSP2 and other polypeptides in Western blot.
CONCLUSION: Data from this current study may contribute to a development of MSP2 vaccine candidates based on conserved and dimorphic regions thus bypassing the complexity of vaccine development related to the polymorphism of full-length MSP2
Observations of a radio-bright, X-ray obscured GRS 1915+105
The Galactic black hole transient GRS1915+105 is famous for its markedly
variable X-ray and radio behaviour, and for being the archetypal galactic
source of relativistic jets. It entered an X-ray outburst in 1992 and has been
active ever since. Since 2018 GRS1915+105 has declined into an extended
low-flux X-ray plateau, occasionally interrupted by multi-wavelength flares.
Here we report the radio and X-ray properties of GRS1915+105 collected in this
new phase, and compare the recent data to historic observations. We find that
while the X-ray emission remained unprecedentedly low for most of the time
following the decline in 2018, the radio emission shows a clear mode change
half way through the extended X-ray plateau in 2019 June: from low flux (~3mJy)
and limited variability, to marked flaring with fluxes two orders of magnitude
larger. GRS1915+105 appears to have entered a low-luminosity canonical hard
state, and then transitioned to an unusual accretion phase, characterised by
heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides
from the observer the accretion processes feeding the variable jet responsible
for the radio flaring. The radio-X-ray correlation suggests that the current
low X-ray flux state may be a signature of a super-Eddington state akin to the
X-ray binaries SS433 or V404 Cyg
Evolving optical polarisation of the black hole X-ray binary MAXI J1820+070
Aims. The optical emission of black hole transients increases by several
magnitudes during the X-ray outbursts. Whether the extra light arises from the
X-ray heated outer disc, from the inner hot accretion flow, or from the jet is
currently debated. Optical polarisation measurements are able to distinguish
the relative contributions of these components. Methods. We present the results
of BVR polarisation measurements of the black hole X-ray binary MAXI J1820+070
during the period of March-April 2018. Results. We detect small, 0.7%,
but statistically significant polarisation, part of which is of interstellar
origin. Depending on the interstellar polarisation estimate, the intrinsic
polarisation degree of the source is between 0.3% and 0.7%, and the
polarisation position angle is between . We show that the
polarisation increases after MJD 58222 (2018 April 14). The change is of the
order of 0.1% and is most pronounced in the R band. The change of the source
Stokes parameters occurs simultaneously with the drop of the observed V-band
flux and a slow softening of the X-ray spectrum. The Stokes vectors of
intrinsic polarisation before and after the drop are parallel, at least in the
V and R filters. Conclusions. We suggest that the increased polarisation is due
to the decreasing contribution of the non-polarized component, which we
associate with the the hot flow or jet emission. The low polarisation can
result from the tangled geometry of the magnetic field or from the Faraday
rotation in the dense, ionised, and magnetised medium close to the black hole.
The polarized optical emission is likely produced by the irradiated disc or by
scattering of its radiation in the optically thin outflow.Comment: 11 pages, 12 figures, A&A in pres
Point mutations affecting yeast prion propagation change the structure of its amyloid fibrils
We investigated the effect of the point substitutions in the N-terminal domain of the yeast prion protein Sup35 (Sup35NMp) on the structure of its amyloid fibrils. As the objects of the study, proteins with mutations that have different influence on the [PSI+] prion propagation, but do not prevent the aggregation of Sup35NMp in vitro were chosen. The use of the wide range of physico-chemical methods allowed us to show significant differences in the structure of these aggregates, their physical size, clumping tendency. Also we demonstrated that the fluorescent probe thioflavin T (ThT) can be successfully used for investigation of subtle changes in the structural organization of fibrils formed from various Sup35NMp. The obtained results and our theoretical predictions allowed us to conclude that some of selected amino acid substitutions delimit the region of the protein that forms the core of amyloid fibrils, and change the fibrils structure. The relationship of structural features of in vitro Sup35NMp amyloid aggregates with the stability of the [PSI+] prion in vivo allowed us to suggest that oligopeptide repeats (R) of the amyloidogenic N-terminal domain of Sup35NMp from R0 to R2 play a key role in protein aggregation. Their arrangement rather than just presence is critical for propagation of the strong [PSI+] prion variants. The results confirm the suitability of the proposed combination of theoretical and empirical approaches for identifying changes in the amyloid fibrils structure, which, in turn, can significantly affect both the functional stability of amyloid fibrils and their pathogenicity.Laboratorio de Investigación y Desarrollo de Bioactivo
Observations of a radio-bright, X-ray obscured GRS 1915+105
The Galactic black hole transient GRS 1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS 1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multiwavelength flares. Here, we report the radio and X-ray properties of GRS 1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (similar to 3mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS 1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterized by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg
Flanking signal and mature peptide residues influence signal peptide cleavage
<p>Abstract</p> <p>Background</p> <p>Signal peptides (SPs) mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I), and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i) eukaryotes (Euk) (ii) Gram-positive (Gram+) bacteria, and (iii) Gram-negative (Gram-) bacteria.</p> <p>Results</p> <p>In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as p<it>I</it>, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups.</p> <p>Conclusion</p> <p>We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.</p
Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime
The Be X-ray binary EXO2030+375 was in an extended low-luminosity state during most of 2016. We observed this state with NuSTAR and Swift, supported by INTEGRAL observations and optical spectroscopy with the Nordic Optical Telescope (NOT). We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller effect. The H alpha data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTAR data, taken at a 3-78 keV luminosity of similar to 6.8 x 10(35) erg s(-1) (for a distance of 7.1 kpc), are nicely described by standard accreting pulsar models such as an absorbed power law with a high-energy cutoff. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phase-resolved spectroscopy we find a peculiar variation of the photon index from similar to 1.5 to similar to 2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newton at much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 10(34) erg s(-1) where the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the accretion being stopped by the propeller effect and we only observe the neutron star surface cooling
Super-heavy fermion material as metallic refrigerant for adiabatic demagnetization cooling
Low-temperature refrigeration is of crucial importance in fundamental
research of condensed matter physics, as the investigations of fascinating
quantum phenomena, such as superconductivity, superfluidity and quantum
criticality, often require refrigeration down to very low temperatures.
Currently, cryogenic refrigerators with He gas are widely used for cooling
below 1 Kelvin. However, usage of the gas is being increasingly difficult due
to the current world-wide shortage. Therefore, it is important to consider
alternative methods of refrigeration. Here, we show that a new type of
refrigerant, super-heavy electron metal, YbCoZn, can be used for
adiabatic demagnetization refrigeration, which does not require 3He gas. A
number of advantages includes much better metallic thermal conductivity
compared to the conventional insulating refrigerants. We also demonstrate that
the cooling performance is optimized in YbScCoZn by
partial Sc substitution with 0.19. The substitution induces chemical
pressure which drives the materials close to a zero-field quantum critical
point. This leads to an additional enhancement of the magnetocaloric effect in
low fields and low temperatures enabling final temperatures well below 100 mK.
Such performance has up to now been restricted to insulators. Since nearly a
century the same principle of using local magnetic moments has been applied for
adiabatic demagnetization cooling. This study opens new possibilities of using
itinerant magnetic moments for the cryogen-free refrigeration
- …