50 research outputs found

    Paratransgenic Control of Vector Borne Diseases

    Get PDF
    Conventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host's ability to transmit the pathogen. We have successfully utilized this strategy to reduce carriage rates of Trypanosoma cruzi, the causative agent of Chagas disease, in the triatomine bug, Rhodnius prolixus, and are currently developing this methodology to control the transmission of Leishmania donovani by the sand fly Phlebotomus argentipes. Several effector molecules, including antimicrobial peptides and highly specific single chain antibodies, are currently being explored for their anti-parasite activities in these two systems. In preparation for eventual field use, we are actively engaged in risk assessment studies addressing the issue of horizontal gene transfer from the modified bacteria to environmental microbes

    Initial Assessment, Surveillance, and Management of Blood Pressure in Patients Receiving Vascular Endothelial Growth Factor Signaling Pathway Inhibitors

    Get PDF
    Hypertension is a mechanism-based toxic effect of drugs that inhibit the vascular endothelial growth factor signaling pathway (VSP). Substantial evidence exists for managing hypertension as a chronic condition, but there are few prospectively collected data on managing acute hypertension caused by VSP inhibitors. The Investigational Drug Steering Committee of the National Cancer Institute convened an interdisciplinary cardiovascular toxicities expert panel to evaluate this problem, to make recommendations to the Cancer Therapy Evaluation Program on further study, and to structure an approach for safe management by treating physicians. The panel reviewed: the published literature on blood pressure (BP), hypertension, and specific VSP inhibitors; abstracts from major meetings; shared experience with the development of VSP inhibitors; and established principles of hypertension care. The panel generated a consensus report including the recommendations on clinical concerns summarized here. To support the greatest possible number of patients to receive VSP inhibitors safely and effectively, the panel had four recommendations: 1) conduct and document a formal risk assessment for potential cardiovascular complications, 2) recognize that preexisting hypertension will be common in cancer patients and should be identified and addressed before initiation of VSP inhibitor therapy, 3) actively monitor BP throughout treatment with more frequent assessments during the first cycle of treatment, and 4) manage BP with a goal of less than 140/90 mmHg for most patients (and to lower, prespecified goals in patients with specific preexisting cardiovascular risk factors). Proper agent selection, dosing, and scheduling of follow-up should enable maintaining VSP inhibition while avoiding the complications associated with excessive or prolonged elevation in BP

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe

    Characterization of a Lactococcus lactis promoter for heterologous protein production

    No full text
    Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives

    Recombinant Arthrobacter β-1, 3-glucanase as a potential effector molecule for paratransgenic control of Chagas disease

    No full text
    BACKGROUND: Chagas disease is most often transmitted to humans by Trypanosoma cruzi infected triatomine bugs, and remains a significant cause of morbidity and mortality in Central and South America. Control of Chagas disease has relied mainly on vector eradication. However, development of insect resistance has prompted us to develop a paratransgenic strategy to control vectorial transmission of T. cruzi. Here, the potential role of recombinant endoglucanases as anti-trypanosomal agents for paratransgenic application is examined. The surface of T. cruzi is covered by a thick coat of mucin-like glycoproteins that have been proposed to play a role in the binding of T. cruzi to the membrane surface of the vector gut. We hypothesize that disruption of these glycoconjugates could arrest parasite development in the vector and abort the transmission cycle. In this work, we examine the effects of recombinant Arthrobacter luteus β-1, 3-glucanase expressed via Rhodococcus rhodnii on T. cruzi Sylvio II strain. METHODS AND RESULTS: The coding sequence for β-1, 3-glucanase was cloned in-frame to a heterologous promoter/signal sequence from the Mycobacterium kansasii alpha antigen gene resident in an E. coli/R. rhodnii shuttle vector. The resulting construct was confirmed by sequencing, and electroporated into R. rhodnii. Expression products from positive clones were purified from log phase cultures followed by dialysis into physiological buffers. Lysates and media were quantitated by ELISA against rabbit antibody specific to β-1,3-glucanase. Glucanase-positive samples were applied to live T. cruzi parasites in culture and viability accessed by spectrophotometric and fluorescent microscopic measurements. R. rhodnii-expressed β-1,3-glucanase exhibited toxicity against T. cruzi compared to controls when applied at 5 and 10% of the total culture volume. The decrease in cell viability ranged from a maximum of 50% for the media treatments to 80% for the filtered lysates. CONCLUSIONS: These results suggest that recombinant β-glucanase could be a powerful addition to the arsenal of effector molecules for paratransgenic control of Chagas disease. In future studies, the ability of β-glucanase to function in combination with other effector molecules will be explored. Dual targeting of T. cruzi should not only slow resistance but also permit synergistic or additive lethal effects on T. cruzi

    A Paratransgenic Strategy for the Control of Chagas Disease

    Get PDF
    Chagas disease results from infection with the parasite Trypanosoma cruzi. This disease remains a significant cause of morbidity and mortality in central and south America. Chagas disease now exists and is detected worldwide because of human migration. Control of Chagas disease has relied mainly on vector eradication however, the development of insect resistance to pesticides, coupled with cost and adverse health effects of insecticide treatments, has prompted our group to investigate novel methods of transmission control. Our laboratory has been instrumental in the development of the paratransgenic strategy to control vectorial transmission of T. cruzi. In this paper, we discuss various components of the paratransgenic approach. Specifically, we describe classes of molecules that can serve as effectors, including antimicrobial peptides, endoglucanases, and highly specific single chain antibodies that target surface glycoprotein tags on the surface of T. cruzi. Furthermore, we address evolving concepts related to field dispersal of engineered bacteria as part of the paratransgenic control strategy and attendant risk assessment evaluation

    Bacterial Infection and Immune Responses in Lutzomyia longipalpis Sand Fly Larvae Midgut.

    No full text
    The midgut microbial community in insect vectors of disease is crucial for an effective immune response against infection with various human and animal pathogens. Depending on the aspects of their development, insects can acquire microbes present in soil, water, and plants. Sand flies are major vectors of leishmaniasis, and shown to harbor a wide variety of Gram-negative and Gram-positive bacteria. Sand fly larval stages acquire microorganisms from the soil, and the abundance and distribution of these microorganisms may vary depending on the sand fly species or the breeding site. Here, we assess the distribution of two bacteria commonly found within the gut of sand flies, Pantoea agglomerans and Bacillus subtilis. We demonstrate that these bacteria are able to differentially infect the larval digestive tract, and regulate the immune response in sand fly larvae. Moreover, bacterial distribution, and likely the ability to colonize the gut, is driven, at least in part, by a gradient of pH present in the gut

    Paratransgenic Control of Vector Borne Diseases

    No full text
    <p>Conventional methodologies to control vector borne diseases with chemical pesticides are often associated with environmental toxicity, adverse effects on human health and the emergence of insect resistance. In the paratransgenic strategy, symbiotic or commensal microbes of host insects are transformed to express gene products that interfere with pathogen transmission. These genetically altered microbes are re-introduced back to the insect where expression of the engineered molecules decreases the host's ability to transmit the pathogen. We have successfully utilized this strategy to reduce carriage rates of <i>Trypanosoma cruzi,</i> the causative agent of Chagas disease, in the triatomine bug, <i>Rhodnius prolixus</i>, and are currently developing this methodology to control the transmission of <i>Leishmania donovani</i> by the sand fly <i>Phlebotomus argentipes</i>. Several effector molecules, including antimicrobial peptides and highly specific single chain antibodies, are currently being explored for their anti-parasite activities in these two systems. In preparation for eventual field use, we are actively engaged in risk assessment studies addressing the issue of horizontal gene transfer from the modified bacteria to environmental microbes.</p
    corecore