23 research outputs found

    Prevalence, risk factors, and treatments for post-COVID breathlessness:a systematic review and meta-analysis

    Get PDF
    Persistent breathlessness >28 days after acute COVID-19 infection has been identified as a highly debilitating post-COVID symptom. However, the prevalence, risk factors, mechanisms and treatments for post-COVID breathlessness remain poorly understood. We systematically searched PubMed and Embase for relevant studies published from 1 January 2020 to 1 November 2021 (PROSPERO registration number: CRD42021285733) and included 119 eligible papers. Random-effects meta-analysis of 42 872 patients with COVID-19 reported in 102 papers found an overall prevalence of post-COVID breathlessness of 26% (95% CI 23-29) when measuring the presence/absence of the symptom, and 41% (95% CI 34-48) when using Medical Research Council (MRC)/modified MRC dyspnoea scale. The pooled prevalence decreased significantly from 1-6 months to 7-12 months post-infection. Post-COVID breathlessness was more common in those with severe/critical acute infection, those who were hospitalised and females, and was less likely to be reported by patients in Asia than those in Europe or North America. Multiple pathophysiological mechanisms have been proposed (including deconditioning, restrictive/obstructive airflow limitation, systemic inflammation, impaired mental health), but the body of evidence remains inconclusive. Seven cohort studies and one randomised controlled trial suggested rehabilitation exercises may reduce post-COVID breathlessness. There is an urgent need for mechanistic research and development of interventions for the prevention and treatment of post-COVID breathlessness

    Pilot study evaluating a brief mindfulness intervention for those with chronic pain: study protocol for a randomized controlled trial.

    Get PDF
    BACKGROUND: The burden of chronic pain is a major challenge, impacting the quality of life of patients. Intensive programmes of mindfulness-based therapy can help patients to cope with chronic pain but can be time consuming and require a trained specialist to implement. The self-management model of care is now integral to the care of patients with chronic pain; home-based interventions can be very acceptable, making a compelling argument for investigating brief, self-management interventions. The aim of this study is two-fold: to assess the immediate effects of a brief self-help mindfulness intervention for coping with chronic pain and to assess the feasibility of conducting a definitive randomized controlled trial to determine the effectiveness of such an intervention. METHODS/DESIGN: A randomized controlled pilot study will be conducted to evaluate a brief mindfulness intervention for those with chronic pain. Ninety chronic pain patients who attend hospital outpatient clinics will be recruited and allocated randomly to either the control or treatment group on a 1:1 basis using the computer-generated list of random numbers. The treatment group receives mindfulness audios and the control group receives audios of readings from a non-fiction book, all of which are 15 minutes in length. Immediate effects of the intervention are assessed with brief psychological measures immediately before and after audio use. Mindfulness, mood, health-related quality of life, pain catastrophizing and experience of the intervention are assessed with standardized measures, brief ratings and brief telephone follow-ups, at baseline and after one week and one month. Feasibility is assessed by estimation of effect sizes for outcomes, patient adherence and experience, and appraisal of resource allocation in provision of the intervention. DISCUSSION: This trial will assess whether a brief mindfulness-based intervention is effective for immediately reducing perceived distress and pain with the side effect of increasing relaxation in chronic pain patients and will determine the feasibility of conducting a definitive randomized controlled trial. Patient recruitment began in January 2015 and is due to be completed in June 2016. TRIAL REGISTRATION: ISRCTN61538090 Registered 20 April 2015

    A novel formulation of inhaled sodium cromoglicate (PA101) in idiopathic pulmonary fibrosis and chronic cough: a randomised, double-blind, proof-of-concept, phase 2 trial

    Get PDF
    Background Cough can be a debilitating symptom of idiopathic pulmonary fibrosis (IPF) and is difficult to treat. PA101 is a novel formulation of sodium cromoglicate delivered via a high-efficiency eFlow nebuliser that achieves significantly higher drug deposition in the lung compared with the existing formulations. We aimed to test the efficacy and safety of inhaled PA101 in patients with IPF and chronic cough and, to explore the antitussive mechanism of PA101, patients with chronic idiopathic cough (CIC) were also studied. Methods This pilot, proof-of-concept study consisted of a randomised, double-blind, placebo-controlled trial in patients with IPF and chronic cough and a parallel study of similar design in patients with CIC. Participants with IPF and chronic cough recruited from seven centres in the UK and the Netherlands were randomly assigned (1:1, using a computer-generated randomisation schedule) by site staff to receive PA101 (40 mg) or matching placebo three times a day via oral inhalation for 2 weeks, followed by a 2 week washout, and then crossed over to the other arm. Study participants, investigators, study staff, and the sponsor were masked to group assignment until all participants had completed the study. The primary efficacy endpoint was change from baseline in objective daytime cough frequency (from 24 h acoustic recording, Leicester Cough Monitor). The primary efficacy analysis included all participants who received at least one dose of study drug and had at least one post-baseline efficacy measurement. Safety analysis included all those who took at least one dose of study drug. In the second cohort, participants with CIC were randomly assigned in a study across four centres with similar design and endpoints. The study was registered with ClinicalTrials.gov (NCT02412020) and the EU Clinical Trials Register (EudraCT Number 2014-004025-40) and both cohorts are closed to new participants. Findings Between Feb 13, 2015, and Feb 2, 2016, 24 participants with IPF were randomly assigned to treatment groups. 28 participants with CIC were enrolled during the same period and 27 received study treatment. In patients with IPF, PA101 reduced daytime cough frequency by 31·1% at day 14 compared with placebo; daytime cough frequency decreased from a mean 55 (SD 55) coughs per h at baseline to 39 (29) coughs per h at day 14 following treatment with PA101, versus 51 (37) coughs per h at baseline to 52 (40) cough per h following placebo treatment (ratio of least-squares [LS] means 0·67, 95% CI 0·48–0·94, p=0·0241). By contrast, no treatment benefit for PA101 was observed in the CIC cohort; mean reduction of daytime cough frequency at day 14 for PA101 adjusted for placebo was 6·2% (ratio of LS means 1·27, 0·78–2·06, p=0·31). PA101 was well tolerated in both cohorts. The incidence of adverse events was similar between PA101 and placebo treatments, most adverse events were mild in severity, and no severe adverse events or serious adverse events were reported. Interpretation This study suggests that the mechanism of cough in IPF might be disease specific. Inhaled PA101 could be a treatment option for chronic cough in patients with IPF and warrants further investigation

    Characteristics and risk factors for post-COVID-19 breathlessness after hospitalisation for COVID-19.

    Get PDF
    BACKGROUND: Persistence of respiratory symptoms, particularly breathlessness, after acute coronavirus disease 2019 (COVID-19) infection has emerged as a significant clinical problem. We aimed to characterise and identify risk factors for patients with persistent breathlessness following COVID-19 hospitalisation. METHODS: PHOSP-COVID is a multicentre prospective cohort study of UK adults hospitalised for COVID-19. Clinical data were collected during hospitalisation and at a follow-up visit. Breathlessness was measured by a numeric rating scale of 0-10. We defined post-COVID-19 breathlessness as an increase in score of ≥1 compared to the pre-COVID-19 level. Multivariable logistic regression was used to identify risk factors and to develop a prediction model for post-COVID-19 breathlessness. RESULTS: We included 1226 participants (37% female, median age 59 years, 22% mechanically ventilated). At a median 5 months after discharge, 50% reported post-COVID-19 breathlessness. Risk factors for post-COVID-19 breathlessness were socioeconomic deprivation (adjusted OR 1.67, 95% CI 1.14-2.44), pre-existing depression/anxiety (adjusted OR 1.58, 95% CI 1.06-2.35), female sex (adjusted OR 1.56, 95% CI 1.21-2.00) and admission duration (adjusted OR 1.01, 95% CI 1.00-1.02). Black ethnicity (adjusted OR 0.56, 95% CI 0.35-0.89) and older age groups (adjusted OR 0.31, 95% CI 0.14-0.66) were less likely to report post-COVID-19 breathlessness. Post-COVID-19 breathlessness was associated with worse performance on the shuttle walk test and forced vital capacity, but not with obstructive airflow limitation. The prediction model had fair discrimination (concordance statistic 0.66, 95% CI 0.63-0.69) and good calibration (calibration slope 1.00, 95% CI 0.80-1.21). CONCLUSIONS: Post-COVID-19 breathlessness was commonly reported in this national cohort of patients hospitalised for COVID-19 and is likely to be a multifactorial problem with physical and emotional components

    Cohort Profile: Post-hospitalisation COVID-19 study (PHOSP-COVID)

    Get PDF
    PHOSP-COVID is a national UK multi-centre cohort study of patients who were hospitalised for COVID-19 and subsequently discharged.PHOSP-COVID was established to investigate the medium- and long-term sequelae of severe COVID-19 requiring hospitalisation, understand the underlying mechanisms of these sequelae, evaluate the medium- and long-term effects of COVID-19 treatments, and to serve as a platform to enable future studies, including clinical trials.Data collected covered a wide range of physical measures, biological samples, and Patient Reported Outcome Measures (PROMs).Participants could join the cohort either in Tier 1 only with remote data collection using hospital records, a PROMs app and postal saliva sample for DNA, or in Tier 2 where they were invited to attend two specific research visits for further data collection and biological research sampling. These research visits occurred at five (range 2-7) months and 12 (range 10-14) months post-discharge. Participants could also participate in specific nested studies (Tier 3) at selected sites.All participants were asked to consent to further follow-up for 25 years via linkage to their electronic healthcare records and to be re-contacted for further research.In total, 7935 participants were recruited from 83 UK sites: 5238 to Tier 1 and 2697 to Tier 2, between August 2020 and March 2022.Cohort data are held in a Trusted Research Environment and samples stored in a central biobank. Data and samples can be accessed upon request and subject to approvals

    Physical, cognitive, and mental health impacts of COVID-19 after hospitalisation (PHOSP-COVID): a UK multicentre, prospective cohort study

    Get PDF
    Background The impact of COVID-19 on physical and mental health and employment after hospitalisation with acute disease is not well understood. The aim of this study was to determine the effects of COVID-19-related hospitalisation on health and employment, to identify factors associated with recovery, and to describe recovery phenotypes. Methods The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a multicentre, long-term follow-up study of adults (aged ≥18 years) discharged from hospital in the UK with a clinical diagnosis of COVID-19, involving an assessment between 2 and 7 months after discharge, including detailed recording of symptoms, and physiological and biochemical testing. Multivariable logistic regression was done for the primary outcome of patient-perceived recovery, with age, sex, ethnicity, body-mass index, comorbidities, and severity of acute illness as covariates. A post-hoc cluster analysis of outcomes for breathlessness, fatigue, mental health, cognitive impairment, and physical performance was done using the clustering large applications k-medoids approach. The study is registered on the ISRCTN Registry (ISRCTN10980107). Findings We report findings for 1077 patients discharged from hospital between March 5 and Nov 30, 2020, who underwent assessment at a median of 5·9 months (IQR 4·9–6·5) after discharge. Participants had a mean age of 58 years (SD 13); 384 (36%) were female, 710 (69%) were of white ethnicity, 288 (27%) had received mechanical ventilation, and 540 (50%) had at least two comorbidities. At follow-up, only 239 (29%) of 830 participants felt fully recovered, 158 (20%) of 806 had a new disability (assessed by the Washington Group Short Set on Functioning), and 124 (19%) of 641 experienced a health-related change in occupation. Factors associated with not recovering were female sex, middle age (40–59 years), two or more comorbidities, and more severe acute illness. The magnitude of the persistent health burden was substantial but only weakly associated with the severity of acute illness. Four clusters were identified with different severities of mental and physical health impairment (n=767): very severe (131 patients, 17%), severe (159, 21%), moderate along with cognitive impairment (127, 17%), and mild (350, 46%). Of the outcomes used in the cluster analysis, all were closely related except for cognitive impairment. Three (3%) of 113 patients in the very severe cluster, nine (7%) of 129 in the severe cluster, 36 (36%) of 99 in the moderate cluster, and 114 (43%) of 267 in the mild cluster reported feeling fully recovered. Persistently elevated serum C-reactive protein was positively associated with cluster severity. Interpretation We identified factors related to not recovering after hospital admission with COVID-19 at 6 months after discharge (eg, female sex, middle age, two or more comorbidities, and more acute severe illness), and four different recovery phenotypes. The severity of physical and mental health impairments were closely related, whereas cognitive health impairments were independent. In clinical care, a proactive approach is needed across the acute severity spectrum, with interdisciplinary working, wide access to COVID-19 holistic clinical services, and the potential to stratify care. Funding UK Research and Innovation and National Institute for Health Research

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Early diagnosis of Werner's syndrome using exome-wide sequencing in a single, atypical patient.

    Get PDF
    Genetic diagnosis of inherited metabolic disease is conventionally achieved through syndrome recognition and targeted gene sequencing, but many patients receive no specific diagnosis. Next generation sequencing allied to capture of expressed sequences from genomic DNA now offers a powerful new diagnostic approach. Barriers to routine diagnostic use include cost, and the complexity of interpreting results arising from simultaneous identification of large numbers of variants. We applied exome-wide sequencing to an individual, 16 year old daughter of consanguineous parents with a novel syndrome of short stature, severe insulin resistance, ptosis and microcephaly. Pulldown of expressed sequences from genomic DNA followed by massively parallel sequencing was undertaken. Single nucleotide variants (SNVs) were called using SAMtools prior to filtering based on sequence quality and existence in control genomes and exomes. Of 485 genetic variants predicted to alter protein sequence and absent from control data, 24 were homozygous in the patient. One mutation – the p.Arg732X mutation in the WRN gene – has previously been reported in Werner’s syndrome (WS). On re-evaluation of the patient several early features of WS were detected including loss of fat from the extremities and frontal hair thinning. Lymphoblastoid cells from the proband exhibited a defective decatenation checkpoint, consistent with loss of WRN activity. We have thus diagnosed WS some 15 years earlier than average, permitting aggressive prophylactic therapy and screening for WS complications, illustrating the potential of exome-wide sequencing to achieve early diagnosis and change management of rare autosomal recessive disease, even in individual patients of consanguineous parentage with apparently novel syndromes
    corecore