1,305 research outputs found
High power (60mW) single frequency erbium:ytterbium codoped fiber laser
The characteristics of a high power Er3+:Yb3+ single frequency fiber laser pumped at 980nm are reported. The device gives 60mW output power with RIN 10MHz and linewidth 500kHz. At low output powers (< 30mW) the slope efficiency is as high as 25%, falling to 12% at higher powers, the saturation behaviour is related to a bottleneck effect due to the finite Yb-Er transfer rate. Improved performance can be obtained using new fibers with an increased rare-earth concentration which show negligible signs of erbium clustering
Efficient single frequency fibre lasers using novel photosensitive Er/Yb optical fibres
Boron- and germanium-doped highly photosensitive cladding is used in a novel design to achieve photosensitive Er/Yb-doped fibers, permitting short, strong gratings (length ~1cm, reflectivity >99%) to be written without hydrogenation. The high absorption at 980nm in Er/Yb fibers permits efficient pump absorption over a short device length, which is ideal for achieving highly efficient single-frequency fiber lasers. Both single-frequency Bragg-grating reflector and distributed-feedback lasers with slope efficiencies of 25% with respect to launched pump power have been realized in such fibers
Superconductivity and single crystal growth of Ni0:05TaS2
Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2
single crystal was successfully grown via the NaCl/KCl flux method. The
obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly
smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and
magnetization measurements reveal that the superconductivity transition
temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The
charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in
Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux
demonstrates that NaCl/KCl flux method will be a feasible method for single
crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS
Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations
We investigate the solvent-accessible area method by means of Metropolis
simulations of the brain peptide Met-Enkephalin at 300. For the energy
function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The
simulations are compared with one another, with simulations with a distance
dependent electrostatic permittivity , and with vacuum
simulations (). Parallel tempering and the biased Metropolis
techniques RM are employed and their performance is evaluated. The measured
observables include energy and dihedral probability densities (pds), integrated
autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be
unsuitable for these simulations. For all other systems selected configurations
are minimized in search of the global energy minima, which are found for the
vacuum and the system, but for none of the ASP models. Other
observables show a remarkable dependence on the ASPs. In particular, we find
three ASP sets for which the autocorrelations at 300K are considerably
smaller than for vacuum simulations.Comment: 10 pages and 8 figure
Spontaneous Creation of Inflationary Universes and the Cosmic Landscape
We study some gravitational instanton solutions that offer a natural
realization of the spontaneous creation of inflationary universes in the brane
world context in string theory. Decoherence due to couplings of higher
(perturbative) modes of the metric as well as matter fields modifies the
Hartle-Hawking wavefunction for de Sitter space. Generalizing this new
wavefunction to be used in string theory, we propose a principle in string
theory that hopefully will lead us to the particular vacuum we live in, thus
avoiding the anthropic principle. As an illustration of this idea, we give a
phenomenological analysis of the probability of quantum tunneling to various
stringy vacua. We find that the preferred tunneling is to an inflationary
universe (like our early universe), not to a universe with a very small
cosmological constant (i.e., like today's universe) and not to a 10-dimensional
uncompactified de Sitter universe. Such preferred solutions are interesting as
they offer a cosmological mechanism for the stabilization of extra dimensions
during the inflationary epoch.Comment: 52 pages, 7 figures, 1 table. Added discussion on supercritical
string vacua, added reference
Inflation in Realistic D-Brane Models
We find successful models of D-brane/anti-brane inflation within a string
context. We work within the GKP-KKLT class of type IIB string vacua for which
many moduli are stabilized through fluxes, as recently modified to include
`realistic' orbifold sectors containing standard-model type particles. We allow
all moduli to roll when searching for inflationary solutions and find that
inflation is not generic inasmuch as special choices must be made for the
parameters describing the vacuum. But given these choices inflation can occur
for a reasonably wide range of initial conditions for the brane and antibrane.
We find that D-terms associated with the orbifold blowing-up modes play an
important role in the inflationary dynamics. Since the models contain a
standard-model-like sector after inflation, they open up the possibility of
addressing reheating issues. We calculate predictions for the CMB temperature
fluctuations and find that these can be consistent with observations, but are
generically not deep within the scale-invariant regime and so can allow
appreciable values for as well as predicting a potentially
observable gravity-wave signal. It is also possible to generate some admixture
of isocurvature fluctuations.Comment: 39 pages, 21 figures; added references; identified parameters
combining successful inflation with strong warping, as needed for consistency
of the approximation
Ground-state properties of tubelike flexible polymers
In this work we investigate structural properties of native states of a
simple model for short flexible homopolymers, where the steric influence of
monomeric side chains is effectively introduced by a thickness constraint. This
geometric constraint is implemented through the concept of the global radius of
curvature and affects the conformational topology of ground-state structures. A
systematic analysis allows for a thickness-dependent classification of the
dominant ground-state topologies. It turns out that helical structures,
strands, rings, and coils are natural, intrinsic geometries of such tubelike
objects
Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum
Prephenate dehydratase is a key regulatory enzyme in the phenylalanine-specific pathway of Corynebacterium glutamicum. PCR-based random mutagenesis and functional complementation were used to screen for m-fluorophenylalanine (mFP)-resistant mutants. Comparison of the amino acid sequence of the mutant prephenate dehydratases indicated that Ser-99 plays a role in the feedback regulation of the enzyme. When Ser-99 of the wild-type enzyme was replaced by Met, the specific activity of the mutant enzyme was 30% lower than that of the wild-type. The Ser99Met mutant was active in the presence of 50 muM phenylalanine, whereas the wild-type enzyme was not. The functional roles of the eight conserved residues of prephenate dehydratase were investigated by site-directed mutagenesis. Glu64Asp substitution reduced enzyme activity by 15%, with a 4.5- and 1.7-fold increase in K-m and k(cat) values, respectively. Replacement of Thr-183 by either Ala or Tyr resulted in a complete loss of enzyme activity. Substitution of Arg-184 with Leu resulted in a 50% decrease of enzyme activity. The specific activity for Phe185Tyr was more than 96% lower than that of the wild-type, and the K-m value was 26-fold higher. Alterations in the conserved Asp-76, Glu-89, His-115, and Arg-236 residues did not cause a significant change in the K-m and k(cat) values. These results indicated that Glu-64, Thr-183, Arg-184, and Phe-185 residues might be involved in substrate binding and/or catalytic activity
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Expression of Pseudomonas amyloderamosa isoamylase gene in Saccharomyces cerevisiae
Isoamylase gene (iso) of Pseudomonas amyloderamosa was amplified by polymerase chain reaction and cloned into Saccharomyces cerevisiae vectors under the control of alcohol dehydrogenase gene and glyceraldehyde-3-phosphate dehydrogenase gene promoters. The signal sequence of iso gene was also replaced with that of Schwanniomyces occidentalis alpha-amylase gene. The extracellular isoamylase activity of transformed Sacc. cerevisiae could reach 86 U ml(-1) after a 4-days cultivation
- …
