1,305 research outputs found

    High power (60mW) single frequency erbium:ytterbium codoped fiber laser

    No full text
    The characteristics of a high power Er3+:Yb3+ single frequency fiber laser pumped at 980nm are reported. The device gives 60mW output power with RIN 10MHz and linewidth 500kHz. At low output powers (< 30mW) the slope efficiency is as high as 25%, falling to 12% at higher powers, the saturation behaviour is related to a bottleneck effect due to the finite Yb-Er transfer rate. Improved performance can be obtained using new fibers with an increased rare-earth concentration which show negligible signs of erbium clustering

    Efficient single frequency fibre lasers using novel photosensitive Er/Yb optical fibres

    No full text
    Boron- and germanium-doped highly photosensitive cladding is used in a novel design to achieve photosensitive Er/Yb-doped fibers, permitting short, strong gratings (length ~1cm, reflectivity >99%) to be written without hydrogenation. The high absorption at 980nm in Er/Yb fibers permits efficient pump absorption over a short device length, which is ideal for achieving highly efficient single-frequency fiber lasers. Both single-frequency Bragg-grating reflector and distributed-feedback lasers with slope efficiencies of 25% with respect to launched pump power have been realized in such fibers

    Superconductivity and single crystal growth of Ni0:05TaS2

    Full text link
    Superconductivity was discovered in a Ni0:05TaS2 single crystal. A Ni0:05TaS2 single crystal was successfully grown via the NaCl/KCl flux method. The obtained lattice constant c of Ni0:05TaS2 is 1.1999 nm, which is significantly smaller than that of 2H-TaS2 (1.208 nm). Electrical resistivity and magnetization measurements reveal that the superconductivity transition temperature of Ni0:05TaS2 is enhanced from 0.8 K (2H-TaS2) to 3.9 K. The charge-density-wave transition of the matrix compound 2H-TaS2 is suppressed in Ni0:05TaS2. The success of Ni0:05TaS2 single crystal growth via a NaCl/KCl flux demonstrates that NaCl/KCl flux method will be a feasible method for single crystal growth of the layered transition metal dichalcogenides.Comment: 13pages, 6 figures, Published in SS

    Metropolis simulations of Met-Enkephalin with solvent-accessible area parameterizations

    Get PDF
    We investigate the solvent-accessible area method by means of Metropolis simulations of the brain peptide Met-Enkephalin at 300K K. For the energy function ECEPP/2 nine atomic solvation parameter (ASP) sets are studied. The simulations are compared with one another, with simulations with a distance dependent electrostatic permittivity ϵ(r)\epsilon (r), and with vacuum simulations (ϵ=2\epsilon =2). Parallel tempering and the biased Metropolis techniques RM1_1 are employed and their performance is evaluated. The measured observables include energy and dihedral probability densities (pds), integrated autocorrelation times, and acceptance rates. Two of the ASP sets turn out to be unsuitable for these simulations. For all other systems selected configurations are minimized in search of the global energy minima, which are found for the vacuum and the ϵ(r)\epsilon(r) system, but for none of the ASP models. Other observables show a remarkable dependence on the ASPs. In particular, we find three ASP sets for which the autocorrelations at 300 K are considerably smaller than for vacuum simulations.Comment: 10 pages and 8 figure

    Spontaneous Creation of Inflationary Universes and the Cosmic Landscape

    Full text link
    We study some gravitational instanton solutions that offer a natural realization of the spontaneous creation of inflationary universes in the brane world context in string theory. Decoherence due to couplings of higher (perturbative) modes of the metric as well as matter fields modifies the Hartle-Hawking wavefunction for de Sitter space. Generalizing this new wavefunction to be used in string theory, we propose a principle in string theory that hopefully will lead us to the particular vacuum we live in, thus avoiding the anthropic principle. As an illustration of this idea, we give a phenomenological analysis of the probability of quantum tunneling to various stringy vacua. We find that the preferred tunneling is to an inflationary universe (like our early universe), not to a universe with a very small cosmological constant (i.e., like today's universe) and not to a 10-dimensional uncompactified de Sitter universe. Such preferred solutions are interesting as they offer a cosmological mechanism for the stabilization of extra dimensions during the inflationary epoch.Comment: 52 pages, 7 figures, 1 table. Added discussion on supercritical string vacua, added reference

    Inflation in Realistic D-Brane Models

    Full text link
    We find successful models of D-brane/anti-brane inflation within a string context. We work within the GKP-KKLT class of type IIB string vacua for which many moduli are stabilized through fluxes, as recently modified to include `realistic' orbifold sectors containing standard-model type particles. We allow all moduli to roll when searching for inflationary solutions and find that inflation is not generic inasmuch as special choices must be made for the parameters describing the vacuum. But given these choices inflation can occur for a reasonably wide range of initial conditions for the brane and antibrane. We find that D-terms associated with the orbifold blowing-up modes play an important role in the inflationary dynamics. Since the models contain a standard-model-like sector after inflation, they open up the possibility of addressing reheating issues. We calculate predictions for the CMB temperature fluctuations and find that these can be consistent with observations, but are generically not deep within the scale-invariant regime and so can allow appreciable values for dns/dlnkdn_s/d\ln k as well as predicting a potentially observable gravity-wave signal. It is also possible to generate some admixture of isocurvature fluctuations.Comment: 39 pages, 21 figures; added references; identified parameters combining successful inflation with strong warping, as needed for consistency of the approximation

    Ground-state properties of tubelike flexible polymers

    Full text link
    In this work we investigate structural properties of native states of a simple model for short flexible homopolymers, where the steric influence of monomeric side chains is effectively introduced by a thickness constraint. This geometric constraint is implemented through the concept of the global radius of curvature and affects the conformational topology of ground-state structures. A systematic analysis allows for a thickness-dependent classification of the dominant ground-state topologies. It turns out that helical structures, strands, rings, and coils are natural, intrinsic geometries of such tubelike objects

    Mutational analysis of feedback inhibition and catalytic sites of prephenate dehydratase from Corynebacterium glutamicum

    Get PDF
    Prephenate dehydratase is a key regulatory enzyme in the phenylalanine-specific pathway of Corynebacterium glutamicum. PCR-based random mutagenesis and functional complementation were used to screen for m-fluorophenylalanine (mFP)-resistant mutants. Comparison of the amino acid sequence of the mutant prephenate dehydratases indicated that Ser-99 plays a role in the feedback regulation of the enzyme. When Ser-99 of the wild-type enzyme was replaced by Met, the specific activity of the mutant enzyme was 30% lower than that of the wild-type. The Ser99Met mutant was active in the presence of 50 muM phenylalanine, whereas the wild-type enzyme was not. The functional roles of the eight conserved residues of prephenate dehydratase were investigated by site-directed mutagenesis. Glu64Asp substitution reduced enzyme activity by 15%, with a 4.5- and 1.7-fold increase in K-m and k(cat) values, respectively. Replacement of Thr-183 by either Ala or Tyr resulted in a complete loss of enzyme activity. Substitution of Arg-184 with Leu resulted in a 50% decrease of enzyme activity. The specific activity for Phe185Tyr was more than 96% lower than that of the wild-type, and the K-m value was 26-fold higher. Alterations in the conserved Asp-76, Glu-89, His-115, and Arg-236 residues did not cause a significant change in the K-m and k(cat) values. These results indicated that Glu-64, Thr-183, Arg-184, and Phe-185 residues might be involved in substrate binding and/or catalytic activity

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Expression of Pseudomonas amyloderamosa isoamylase gene in Saccharomyces cerevisiae

    Get PDF
    Isoamylase gene (iso) of Pseudomonas amyloderamosa was amplified by polymerase chain reaction and cloned into Saccharomyces cerevisiae vectors under the control of alcohol dehydrogenase gene and glyceraldehyde-3-phosphate dehydrogenase gene promoters. The signal sequence of iso gene was also replaced with that of Schwanniomyces occidentalis alpha-amylase gene. The extracellular isoamylase activity of transformed Sacc. cerevisiae could reach 86 U ml(-1) after a 4-days cultivation
    corecore