754 research outputs found

    Physiologic Studies on the Heart of Amblema peruviana (Mollusca, Bivalvia)

    Get PDF
    Physiologic Studies on the Heart of Amblema peruviana. The heart of the freshwater clam, Amblema peruviana was found to be relatively insensitive to changes in ionic concentrations, and could function in extremely dilute ionic environments. Pharmacologic studies showed a bimodal acetylcholine response, with inhibition at lower concentrations, and excitation at higher concentrations. CI- ion was found to potentiate the depressor acetylcholine response. The resting membrane potential was found to be more negative than that found in comparable marine species

    ZraP is a periplasmic molecular chaperone and a repressor of the zinc-responsive two-component regulator ZraSR

    Get PDF
    The bacterial envelope is the interface with the surrounding environment and is consequently subjected to a barrage of noxious agents including a range of compounds with antimicrobial activity. The ESR (envelope stress response) pathways of enteric bacteria are critical for maintenance of the envelope against these antimicrobial agents. In the present study, we demonstrate that the periplasmic protein ZraP contributes to envelope homoeostasis and assign both chaperone and regulatory function to ZraP from Salmonella Typhimurium. The ZraP chaperone mechanism is catalytic and independent of ATP; the chaperone activity is dependent on the presence of zinc, which is shown to be responsible for the stabilization of an oligomeric ZraP complex. Furthermore, ZraP can act to repress the two-component regulatory system ZraSR, which itself is responsive to zinc concentrations. Through structural homology, ZraP is a member of the bacterial CpxP family of periplasmic proteins, which also consists of CpxP and Spy. We demonstrate environmental co-expression of the CpxP family and identify an important role for these proteins in Salmonella's defence against the cationic antimicrobial peptide polymyxin B

    Resolving the contributions of the membrane-bound and periplasmic nitrate reductase systems to nitric oxide and nitrous oxide production in Salmonella enterica serovar Typhimurium

    Get PDF
    The production of cytotoxic nitric oxide (NO) and conversion into the neuropharmacological agent and potent greenhouse gas nitrous oxide (N2O) is linked with anoxic nitrate catabolism by Salmonella enterica serovar Typhimurium. Salmonella can synthesize two types of nitrate reductase: a membrane-bound form (Nar) and a periplasmic form (Nap). Nitrate catabolism was studied under nitrate-rich and nitrate-limited conditions in chemostat cultures following transition from oxic to anoxic conditions. Intracellular NO production was reported qualitatively by assessing transcription of the NO-regulated genes encoding flavohaemoglobin (Hmp), flavorubredoxin (NorV) and hybrid cluster protein (Hcp). A more quantitative analysis of the extent of NO formation was gained by measuring production of N2O, the end-product of anoxic NO-detoxification. Under nitrate-rich conditions, the nar, nap, hmp, norV and hcp genes were all induced following transition from the oxic to anoxic state, and 20% of nitrate consumed in steady-state was released as N2O when nitrite had accumulated to millimolar levels. The kinetics of nitrate consumption, nitrite accumulation and N2O production were similar to those of wild-type in nitrate-sufficient cultures of a nap mutant. In contrast, in a narG mutant, the steady-state rate of N2O production was ~30-fold lower than that of the wild-type. Under nitrate-limited conditions, nap, but not nar, was up-regulated following transition from oxic to anoxic metabolism and very little N2O production was observed. Thus a combination of nitrate-sufficiency, nitrite accumulation and an active Nar-type nitrate reductase leads to NO and thence N2O production, and this can account for up to 20% of the nitrate catabolized

    Plasma-Derived Polyreactive Secretory-Like IgA and IgM Opsonizing Salmonella enterica Typhimurium Reduces Invasion and Gut Tissue Inflammation through Agglutination.

    Get PDF
    Due to the increasing emergence of antibiotic-resistant strains of enteropathogenic bacteria, development of alternative treatments to fight against gut infections is a major health issue. While vaccination requires that a proper combination of antigen, adjuvant, and delivery route is defined to elicit protective immunity at mucosae, oral delivery of directly active antibody preparations, referred to as passive immunization, sounds like a valuable alternative. Along the gut, the strategy suffers, however, from the difficulty to obtain sufficient amounts of antibodies with the appropriate specificity and molecular structure for mucosal delivery. Physiologically, at the antibody level, the protection of gastrointestinal mucosal surfaces against enteropathogens is principally mediated by secretory IgA and secretory IgM. We previously demonstrated that purified human plasma-derived IgA and IgM can be associated with secretory component to generate biologically active secretory-like IgA and IgM (SCIgA/M) that can protect epithelial cells from infection by Shigella flexneri in vitro. In this study, we aimed at evaluating the protective potential of these antibody preparations in vivo. We now establish that such polyreactive preparations bind efficiently to Salmonella enterica Typhimurium and trigger bacterial agglutination, as observed by laser scanning confocal microscopy. Upon delivery into a mouse ligated intestinal loop, SCIgA/M-mediated aggregates persist in the intestinal environment and limit the entry of bacteria into intestinal Peyer's patches via immune exclusion. Moreover, oral administration to mice of immune complexes composed of S. Typhimurium and SCIgA/M reduces mucosal infection, systemic dissemination, and local inflammation. Altogether, our data provide valuable clues for the future appraisal of passive oral administration of polyreactive plasma-derived SCIgA/M to combat infection by a variety of enteropathogens

    The RdgC protein employs a novel mechanism involving a finger domain to bind to circular DNA

    Get PDF
    The DNA-binding protein RdgC has been identified as an inhibitor of RecA-mediated homologous recombination in Escherichia coli. In Neisseria species, RdgC also has a role in virulence-associated antigenic variation. We have previously solved the crystal structure of the E. coli RdgC protein and shown it to form a toroidal dimer. In this study, we have conducted a mutational analysis of residues proposed to mediate interactions at the dimer interfaces. We demonstrate that destabilizing either interface has a serious effect on in vivo function, even though a stable complex with circular DNA was still observed. We conclude that tight binding is required for inhibition of RecA activity. We also investigated the role of the RdgC finger domain, and demonstrate that it plays a crucial role in the binding of circular DNA. Together, these data allow us to propose a model for how RdgC loads onto DNA. We discuss how RdgC might inhibit RecA-mediated strand exchange, and how RdgC might be displaced by other DNA metabolism enzymes such as polymerases and helicases

    Identification of tumor-specific Salmonella Typhimurium promoters and their regulatory logic

    Get PDF
    Conventional cancer therapies are often limited in effectiveness and exhibit strong side effects. Therefore, alternative therapeutic strategies are demanded. The employment of tumor-colonizing bacteria that exert anticancer effects is such a novel approach that attracts increasing attention. For instance, Salmonella enterica serovar Typhimurium has been used in many animal tumor models as well as in first clinical studies. These bacteria exhibit inherent tumoricidal effects. In addition, they can be used to deliver therapeutic agents. However, bacterial expression has to be restricted to the tumor to prevent toxic substances from harming healthy tissue. Therefore, we screened an S. Typhimurium promoter-trap library to identify promoters that exclusively drive gene expression in the cancerous tissue. Twelve elements could be detected that show reporter gene expression in tumors but not in spleen and liver. In addition, a DNA motif was identified that appears to be necessary for tumor specificity. Now, such tumor-specific promoters can be used to safely express therapeutic proteins by tumor-colonizing S. Typhimurium directly in the neoplasia

    Schistosome Eggs Impair Protective Th1/Th17 Immune Responses Against Salmonella Infection

    Get PDF
    Countries with a high incidence of helminth infections are characterized by high morbidity and mortality to infections with intracellular pathogens such as Salmonella. Some patients with Salmonella-Schistosoma co-infections develop a so-called "chronic septicemic salmonellosis," with prolonged fever and enlargement of the liver and spleen. These effects are most likely due to the overall immunoregulatory activities of schistosomes such as induction of Tregs, Bregs, alternatively activated macrophages, and degradation of antibodies. However, detailed underlying mechanisms are not very well investigated. Here, we show that intraperitoneal application of live Schistosoma mansoni eggs prior to infection with Salmonella Typhimurium in mice leads to an impairment of IFN-γ and IL-17 responses together with a higher bacterial load compared to Salmonella infection alone. S. mansoni eggs were found in granulomas in the visceral peritoneum attached to the colon. Immunohistological staining revealed IPSE/alpha-1, a glycoprotein secreted from live schistosome eggs, and recruited basophils around the eggs. Noteworthy, IPSE/alpha-1 is known to trigger IL-4 and IL-13 release from basophils which in turn is known to suppress Th1/Th17 responses. Therefore, our data support a mechanism of how schistosomes impair a protective immune response against Salmonella infection and increase our understanding of helminth-bacterial co-infections

    Secreted Bacterial Effectors and Host-Produced Eiger/TNF Drive Death in a Salmonella-Infected Fruit Fly

    Get PDF
    Death by infection is often as much due to the host's reaction as it is to the direct result of microbial action. Here we identify genes in both the host and microbe that are involved in the pathogenesis of infection and disease in Drosophila melanogaster challenged with Salmonella enterica serovartyphimurium (S. typhimurium). We demonstrate that wild-type S. typhimurium causes a lethal systemic infection when injected into the hemocoel of D. melanogaster. Deletion of the gene encoding the secreted bacterial effector Salmonella leucine-rich (PslrP) changes an acute and lethal infection to one that is persistent and less deadly. We propose a model in which Salmonella secreted effectors stimulate the fly and thus cause an immune response that is damaging both to the bacteria and, subsequently, to the host. In support of this model, we show that mutations in the fly gene eiger, a TNF homolog, delay the lethality of Salmonella infection. These results suggest that S. typhimurium-infected flies die from a condition that resembles TNF-induced metabolic collapse in vertebrates. This idea provides us with a new model to study shock-like biology in a genetically manipulable host. In addition, it allows us to study the difference in pathways followed by a microbe when producing an acute or persistent infection
    corecore