1,246 research outputs found

    Finite-element modelling of mechanobiological factors influencing sesamoid tissue morphology in the patellar tendon of an ostrich

    Get PDF
    The appearance and shape of sesamoid bones within a tendon or ligament wrapping around a joint are understood to be influenced by both genetic and epigenetic factors. Ostriches (Struthio camelus) possess two sesamoid patellae (kneecaps), one of which (the distal patella) is unique to their lineage, making them a good model for investigating sesamoid tissue development and evolution. Here we used finite-element modelling to test the hypothesis that specific mechanical cues in the ostrich patellar tendon favour the formation of multiple patellae. Using three-dimensional models that allow application of loading conditions in which all muscles, or only distal or only proximal muscles to be activated, we found that there were multiple regions within the tendon where transformation from soft tissue to fibrocartilage was favourable and therefore a potential for multiple patellae based solely upon mechanical stimuli. While more studies are needed to better understand universal mechanobiological principles as well as full developmental processes, our findings suggest that a tissue differentiation algorithm using shear strain and compressive strain as inputs may be a roughly effective predictor of the tissue differentiation required for sesamoid development

    Stellar Population Diagnostics of Elliptical Galaxy Formation

    Full text link
    Major progress has been achieved in recent years in mapping the properties of passively-evolving, early-type galaxies (ETG) from the local universe all the way to redshift ~2. Here, age and metallicity estimates for local cluster and field ETGs are reviewed as based on color-magnitude, color-sigma, and fundamental plane relations, as well as on spectral-line indices diagnostics. The results of applying the same tools at high redshifts are then discussed, and their consistency with the low-redshift results is assessed. Most low- as well as high-redshift (z~1) observations consistently indicate 1) a formation redshift z>~3 for the bulk of stars in cluster ETGs, with their counterparts in low-density environments being on average ~1-2 Gyr younger, i.e., formed at z>~1.5-2, 2) the duration of the major star formation phase anticorrelates with galaxy mass, and the oldest stellar populations are found in the most massive galaxies. With increasing redshift there is evidence for a decrease in the number density of ETGs, especially of the less massive ones, whereas existing data appear to suggest that most of the most-massive ETGs were already fully assembled at z~1. Beyond this redshift, the space density of ETGs starts dropping significantly, and as ETGs disappear, a population of massive, strongly clustered, starburst galaxies progressively becomes more and more prominent, which makes them the likely progenitors to ETGs.Comment: To appear on Annual Review of Astronomy & Astrophysics, Vol. 44 (2006). 46 pages with 16 figures. Replaced version includes updated references, few typos less, and replaces Fig. 11 and Fig. 16 which had been skrewed u

    Photometric Properties of Void Galaxies in the Sloan Digital Sky Survey DR7 Data Release

    Full text link
    Using the sample presented in Pan:2011, we analyse the photometric properties of 88,794 void galaxies and compare them to galaxies in higher density environments with the same absolute magnitude distribution. In Pan et al. (2011), we found a total of 1054 dynamically distinct voids in the SDSS with radius larger than 10h^-1 Mpc. The voids are underdense, with delta rho/rho < -0.9 in their centers. Here we study the photometric properties of these void galaxies. We look at the u - r colours as an indication of star formation activity and the inverse concentration index as an indication of galaxy type. We find that void galaxies are statistically bluer than galaxies found in higher density environments with the same magnitude distribution. We examine the colours of the galaxies as a function of magnitude, and we fit each colour distribution with a double-Gaussian model for the red and blue subpopulations. As we move from bright to dwarf galaxies, the population of red galaxies steadily decreases and the fraction of blue galaxies increases in both voids and walls, however the fraction of blue galaxies in the voids is always higher and bluer than in the walls. We also split the void and wall galaxies into samples depending on galaxy type. We find that late type void galaxies are bluer than late type wall galaxies and the same holds for early galaxies. We also find that early type, dwarf void galaxies are blue in colour. We also study the properties of void galaxies as a function of their distance from the center of the void. We find very little variation in the properties, such as magnitude, colour and type, of void galaxies as a function of their location in the void. The only exception is that the dwarf void galaxies may live closer to the center. The centers of voids have very similar density contrast and hence all void galaxies live in very similar density environments (ABRIDGED)Comment: 10 pages, 25 figure

    Hierarchical Structure Formation and Modes of Star Formation in Hickson Compact Group 31

    Full text link
    The handful of low-mass, late-type galaxies that comprise Hickson Compact Group 31 is in the midst of complex, ongoing gravitational interactions, evocative of the process of hierarchical structure formation at higher redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we characterize the large population of <10 Myr old star clusters that suffuse the system. From the colors and luminosities of the young star clusters, we find that the galaxies in HCG 31 follow the same universal scaling relations as actively star-forming galaxies in the local Universe despite the unusual compact group environment. Furthermore, the specific frequency of the globular cluster system is consistent with the low end of galaxies of comparable masses locally. This, combined with the large mass of neutral hydrogen and tight constraints on the amount of intragroup light, indicate that the group is undergoing its first epoch of interaction-induced star formation. In both the main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are sensitive to the magnitude of disk turbulence, have both sizes and masses more characteristic of z=1-2 galaxies. After subtracting the light from compact sources, we find no evidence for an underlying old stellar population in F -- it appears to be a truly new structure. The low velocity dispersion of the system components, available reservoir of HI, and current star formation rate of ~10 solar masses per year, indicate that HCG31 is likely to both exhaust its cold gas supply and merge within ~1 Gyr. We conclude that the end product will be an isolated, X-ray-faint, low-mass elliptical.Comment: 24 pages, 14 figures (including low resolution versions of color images), latex file prepared with emulateapj. Accepted for publication by the Astronomical Journa

    The Metallicity Distribution Functions of SEGUE G and K dwarfs: Constraints for Disk Chemical Evolution and Formation

    Full text link
    We present the metallicity distribution function (MDF) for 24,270 G and 16,847 K dwarfs at distances from 0.2 to 2.3 kpc from the Galactic plane, based on spectroscopy from the Sloan Extension for Galactic Understanding and Exploration (SEGUE) survey. This stellar sample is significantly larger in both number and volume than previous spectroscopic analyses, which were limited to the solar vicinity, making it ideal for comparison with local volume-limited samples and Galactic models. For the first time, we have corrected the MDF for the various observational biases introduced by the SEGUE target selection strategy. The SEGUE sample is particularly notable for K dwarfs, which are too faint to examine spectroscopically far from the solar neighborhood. The MDF of both spectral types becomes more metal-poor with increasing |Z|, which reflects the transition from a sample with small [alpha/Fe] values at small heights to one with enhanced [alpha/Fe] above 1 kpc. Comparison of our SEGUE distributions to those of two different Milky Way models reveals that both are more metal-rich than our observed distributions at all heights above the plane. Our unbiased observations of G and K dwarfs provide valuable constraints over the |Z|-height range of the Milky Way disk for chemical and dynamical Galaxy evolution models, previously only calibrated to the solar neighborhood, with particular utility for thin- and thick-disk formation models.Comment: 70 pages, 25 figures, 7 tables. Accepted by The Astrophysical Journa

    Clustering of Luminous Red Galaxies IV: Baryon Acoustic Peak in the Line-of-Sight Direction and a Direct Measurement of H(z)

    Full text link
    We study the clustering of LRG galaxies in the latest spectroscopic SDSS data releases, DR6 and DR7, which sample over 1 Gpc^3/h^3 to z=0.47. The 2-point correlation function \xisp is estimated as a function of perpendicular σ\sigma and line-of-sight π\pi (radial) directions. We find a significant detection of a peak at r110r\simeq 110Mpc/h, which shows as a circular ring in the σπ\sigma-\pi plane. There is also significant evidence for a peak along the radial direction whose shape is consistent with its originating from the recombination-epoch baryon acoustic oscillations (BAO). A \xisp model with no radial BAO peak is disfavored at 3.2σ3.2\sigma, whereas a model with no magnification bias is disfavored at 2σ2\sigma. The radial data enable, for the first time, a direct measurement of the Hubble parameter H(z)H(z) as a function of redshift. This is independent from earlier BAO measurements which used the spherically averaged (monopole) correlation to constrain an integral of H(z)H(z). Using the BAO peak position as a standard ruler in the radial direction, we find: H(z=0.24)=79.69±2.32(±1.29)H(z=0.24)= 79.69 \pm 2.32 (\pm 1.29) km/s/Mpc for z=0.15-0.30 and H(z=0.43)=86.45±3.27(±1.69)H(z=0.43)= 86.45 \pm 3.27 (\pm 1.69) km/s/Mpc for z=0.400.47z=0.40-0.47. The first error is a model independent statistical estimation and the second accounts for systematics both in the measurements and in the model. For the full sample, z=0.150.47z=0.15-0.47, we find H(z=0.34)=83.80±2.96(±1.59)H(z=0.34)= 83.80 \pm 2.96 (\pm 1.59) km/s/Mpc.Comment: Minor revision to match version accepted for publication in MNRAS. Includes comparison to DR7, a Table with the measurements and errors. Includes extended analysis on systematic errors. Some figures have been omitted. Main results and conclusions remain unchange

    The Milky Way's circular velocity curve between 4 and 14 kpc from APOGEE data

    Full text link
    We measure the Milky Way's rotation curve over the Galactocentric range 4 kpc <~ R <~ 14 kpc from the first year of data from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). We model the line-of-sight velocities of 3,365 stars in fourteen fields with b = 0 deg between 30 deg < l < 210 deg out to distances of 10 kpc using an axisymmetric kinematical model that includes a correction for the asymmetric drift of the warm tracer population (\sigma_R ~ 35 km/s). We determine the local value of the circular velocity to be V_c(R_0) = 218 +/- 6 km/s and find that the rotation curve is approximately flat with a local derivative between -3.0 km/s/kpc and 0.4 km/s/kpc. We also measure the Sun's position and velocity in the Galactocentric rest frame, finding the distance to the Galactic center to be 8 kpc < R_0 < 9 kpc, radial velocity V_{R,sun} = -10 +/- 1 km/s, and rotational velocity V_{\phi,sun} = 242^{+10}_{-3} km/s, in good agreement with local measurements of the Sun's radial velocity and with the observed proper motion of Sgr A*. We investigate various systematic uncertainties and find that these are limited to offsets at the percent level, ~2 km/s in V_c. Marginalizing over all the systematics that we consider, we find that V_c(R_0) 99% confidence. We find an offset between the Sun's rotational velocity and the local circular velocity of 26 +/- 3 km/s, which is larger than the locally-measured solar motion of 12 km/s. This larger offset reconciles our value for V_c with recent claims that V_c >~ 240 km/s. Combining our results with other data, we find that the Milky Way's dark-halo mass within the virial radius is ~8x10^{11} M_sun.Comment: submitted to Ap

    The breadth of primary care: a systematic literature review of its core dimensions

    Get PDF
    Background: Even though there is general agreement that primary care is the linchpin of effective health care delivery, to date no efforts have been made to systematically review the scientific evidence supporting this supposition. The aim of this study was to examine the breadth of primary care by identifying its core dimensions and to assess the evidence for their interrelations and their relevance to outcomes at (primary) health system level. Methods: A systematic review of the primary care literature was carried out, restricted to English language journals reporting original research or systematic reviews. Studies published between 2003 and July 2008 were searched in MEDLINE, Embase, Cochrane Library, CINAHL, King's Fund Database, IDEAS Database, and EconLit. Results: Eighty-five studies were identified. This review was able to provide insight in the complexity of primary care as a multidimensional system, by identifying ten core dimensions that constitute a primary care system. The structure of a primary care system consists of three dimensions: 1. governance; 2. economic conditions; and 3. workforce development. The primary care process is determined by four dimensions: 4. access; 5. continuity of care; 6. coordination of care; and 7. comprehensiveness of care. The outcome of a primary care system includes three dimensions: 8. quality of care; 9. efficiency care; and 10. equity in health. There is a considerable evidence base showing that primary care contributes through its dimensions to overall health system performance and health. Conclusions: A primary care system can be defined and approached as a multidimensional system contributing to overall health system performance and health

    The Eighth Data Release of the Sloan Digital Sky Survey: First Data from SDSS-III

    Get PDF
    The Sloan Digital Sky Survey (SDSS) started a new phase in August 2008, with new instrumentation and new surveys focused on Galactic structure and chemical evolution, measurements of the baryon oscillation feature in the clustering of galaxies and the quasar Ly alpha forest, and a radial velocity search for planets around ~8000 stars. This paper describes the first data release of SDSS-III (and the eighth counting from the beginning of the SDSS). The release includes five-band imaging of roughly 5200 deg^2 in the Southern Galactic Cap, bringing the total footprint of the SDSS imaging to 14,555 deg^2, or over a third of the Celestial Sphere. All the imaging data have been reprocessed with an improved sky-subtraction algorithm and a final, self-consistent photometric recalibration and flat-field determination. This release also includes all data from the second phase of the Sloan Extension for Galactic Understanding and Evolution (SEGUE-2), consisting of spectroscopy of approximately 118,000 stars at both high and low Galactic latitudes. All the more than half a million stellar spectra obtained with the SDSS spectrograph have been reprocessed through an improved stellar parameters pipeline, which has better determination of metallicity for high metallicity stars.Comment: Astrophysical Journal Supplements, in press (minor updates from submitted version

    The SDSS-III Baryon Oscillation Spectroscopic Survey: Quasar Target Selection for Data Release Nine

    Full text link
    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg^2, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations in the distribution of Ly-alpha absorption from the spectra of a sample of ~150,000 z>2.2 quasars. Along with measuring the angular diameter distance at z\approx2.5, BOSS will provide the first direct measurement of the expansion rate of the Universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars over 2.2 < z < 3.5, where their colors overlap those of stars. During the first year of the BOSS survey, quasar target selection methods were developed and tested to meet the requirement of delivering at least 15 quasars deg^-2 in this redshift range, out of 40 targets deg^-2. To achieve these surface densities, the magnitude limit of the quasar targets was set at g <= 22.0 or r<=21.85. While detection of the BAO signature in the Ly-alpha absorption in quasar spectra does not require a uniform target selection, many other astrophysical studies do. We therefore defined a uniformly-selected subsample of 20 targets deg^-2, for which the selection efficiency is just over 50%. This "CORE" subsample will be fixed for Years Two through Five of the survey. In this paper we describe the evolution and implementation of the BOSS quasar target selection algorithms during the first two years of BOSS operations. We analyze the spectra obtained during the first year. 11,263 new z>2.2 quasars were spectroscopically confirmed by BOSS. Our current algorithms select an average of 15 z > 2.2 quasars deg^-2 from 40 targets deg^-2 using single-epoch SDSS imaging. Multi-epoch optical data and data at other wavelengths can further improve the efficiency and completeness of BOSS quasar target selection. [Abridged]Comment: 33 pages, 26 figures, 12 tables and a whole bunch of quasars. Submitted to Ap
    corecore