The handful of low-mass, late-type galaxies that comprise Hickson Compact
Group 31 is in the midst of complex, ongoing gravitational interactions,
evocative of the process of hierarchical structure formation at higher
redshifts. With sensitive, multicolor Hubble Space Telescope imaging, we
characterize the large population of <10 Myr old star clusters that suffuse the
system. From the colors and luminosities of the young star clusters, we find
that the galaxies in HCG 31 follow the same universal scaling relations as
actively star-forming galaxies in the local Universe despite the unusual
compact group environment. Furthermore, the specific frequency of the globular
cluster system is consistent with the low end of galaxies of comparable masses
locally. This, combined with the large mass of neutral hydrogen and tight
constraints on the amount of intragroup light, indicate that the group is
undergoing its first epoch of interaction-induced star formation. In both the
main galaxies and the tidal-dwarf candidate, F, stellar complexes, which are
sensitive to the magnitude of disk turbulence, have both sizes and masses more
characteristic of z=1-2 galaxies. After subtracting the light from compact
sources, we find no evidence for an underlying old stellar population in F --
it appears to be a truly new structure. The low velocity dispersion of the
system components, available reservoir of HI, and current star formation rate
of ~10 solar masses per year, indicate that HCG31 is likely to both exhaust its
cold gas supply and merge within ~1 Gyr. We conclude that the end product will
be an isolated, X-ray-faint, low-mass elliptical.Comment: 24 pages, 14 figures (including low resolution versions of color
images), latex file prepared with emulateapj. Accepted for publication by the
Astronomical Journa