243 research outputs found
The XMM Cluster Survey: Exploring scaling relations and completeness of the Dark Energy Survey Year 3 redMaPPer cluster catalogue
We cross-match and compare characteristics of galaxy clusters identified in
observations from two sky surveys using two completely different techniques.
One sample is optically selected from the analysis of three years of Dark
Energy Survey observations using the redMaPPer cluster detection algorithm. The
second is X-ray selected from XMM observations analysed by the XMM Cluster
Survey. The samples comprise a total area of 57.4 deg, bounded by the area
of 4 contiguous XMM survey regions that overlap the DES footprint. We find that
the X-ray selected sample is fully matched with entries in the redMaPPer
catalogue, above 20 and within 0.10.9. Conversely, only 38\%
of the redMaPPer catalogue is matched to an X-ray extended source. Next, using
120 optically clusters and 184 X-ray selected clusters, we investigate the form
of the X-ray luminosity-temperature (), luminosity-richness
() and temperature-richness () scaling relations.
We find that the fitted forms of the relations are consistent
between the two selection methods and also with other studies in the
literature. However, we find tentative evidence for a steepening of the slope
of the relation for low richness systems in the X-ray selected sample. When
considering the scaling of richness with X-ray properties, we again find
consistency in the relations (i.e., and )
between the optical and X-ray selected samples. This is contrary to previous
similar works that find a significant increase in the scatter of the luminosity
scaling relation for X-ray selected samples compared to optically selected
samples.Comment: Accepted for publication to MNRA
The first Hubble diagram and cosmological constraints using superluminous supernovae
This paper has gone through internal review by the DES collaboration.
It has Fermilab preprint number 19-115-AE and DES
publication number 13387. We acknowledge support from EU/FP7-
ERC grant 615929. RCN would like to acknowledge support from
STFC grant ST/N000688/1 and the Faculty of Technology at the
University of Portsmouth. LG was funded by the European Union’s
Horizon 2020 Framework Programme under the Marie Skłodowska-
Curie grant agreement no. 839090. This work has been partially
supported by the Spanish grant PGC2018-095317-B-C21 within
the European Funds for Regional Development (FEDER). Funding
for the DES Projects has been provided by the U.S. Department
of Energy, the U.S. National Science Foundation, the Ministry
of Science and Education of Spain, the Science and Technology
Facilities Council of the United Kingdom, the Higher Education
Funding Council for England, the National Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign,
the Kavli Institute of Cosmological Physics at the University of
Chicago, the Center for Cosmology and Astro-Particle Physics at
the Ohio State University, the Mitchell Institute for Fundamental
Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundac¸ ˜ao Carlos Chagas Filho de Amparo
`a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Cient´ıfico e Tecnol´ogico and the Minist´erio da
Ciˆencia, Tecnologia e Inovac¸ ˜ao, the Deutsche Forschungsgemeinschaft,
and the Collaborating Institutions in the Dark Energy Survey.
The Collaborating Institutions are Argonne National Laboratory, the
University of California at Santa Cruz, the University of Cambridge,
Centro de Investigaciones Energ´eticas, Medioambientales y Tecnol
´ogicas-Madrid, the University of Chicago, University College
London, the DES-Brazil Consortium, the University of Edinburgh,
the Eidgen¨ossische Technische Hochschule (ETH) Z¨urich, Fermi
NationalAccelerator Laboratory, theUniversity of Illinois atUrbana-
Champaign, the Institut de Ci`encies de l’Espai (IEEC/CSIC), the
Institut de F´ısica d’Altes Energies, Lawrence Berkeley National
Laboratory, the Ludwig-Maximilians Universit¨at M¨unchen and the
associated Excellence Cluster Universe, the University of Michigan,
the National Optical Astronomy Observatory, the University of
Nottingham, The Ohio State University, the University of Pennsylvania,
the University of Portsmouth, SLAC National Accelerator
Laboratory, Stanford University, the University of Sussex, Texas
A&M University, and the OzDES Membership Consortium. Based
in part on observations at Cerro Tololo Inter-American Observatory,
National Optical Astronomy Observatory, which is operated by the
Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation.
The DES data management system is supported by the
National Science Foundation under grant numbers AST-1138766
and AST-1536171. The DES participants from Spanish institutions
are partially supported by MINECO under grants AYA2015-
71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-
2016-0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union. IFAE is partially funded by the
CERCA program of the Generalitat de Catalunya. Research leading
to these results has received funding from the European Research
Council under the European Union Seventh Framework Programme
(FP7/2007-2013) including ERC grant agreements 240672, 291329,
and 306478.We acknowledge support from the Australian Research
Council Centre of Excellence for All-skyAstrophysics (CAASTRO),
through project number CE110001020, and the Brazilian Instituto
Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant
465376/2014-2).
This paper has been authored by Fermi Research Alliance, LLC
under Contract No.DE-AC02-07CH11359 with theU.S.Department
of Energy, Office of Science, Office of High Energy Physics. The
United States Government retains and the publisher, by accepting
the paper for publication, acknowledges that the United States
Government retains a non-exclusive, paid-up, irrevocable, worldwide
license to publish or reproduce the published form of this paper,
or allow others to do so, for United States Government purposes.We present the first Hubble diagram of superluminous supernovae (SLSNe) out to a redshift of two, together with constraints
on the matter density, M, and the dark energy equation-of-state parameter, w(≡p/ρ). We build a sample of 20 cosmologically
useful SLSNe I based on light curve and spectroscopy quality cuts. We confirm the robustness of the peak–decline SLSN I
standardization relation with a larger data set and improved fitting techniques than previous works. We then solve the SLSN
model based on the above standardization via minimization of the χ2 computed from a covariance matrix that includes statistical
and systematic uncertainties. For a spatially flat cold dark matter ( CDM) cosmological model, we find M = 0.38+0.24
−0.19,
with an rms of 0.27 mag for the residuals of the distance moduli. For a w0waCDM cosmological model, the addition of SLSNe I
to a ‘baseline’ measurement consisting of Planck temperature together with Type Ia supernovae, results in a small improvement
in the constraints of w0 and wa of 4 per cent.We present simulations of future surveys with 868 and 492 SLSNe I (depending on
the configuration used) and show that such a sample can deliver cosmological constraints in a flat CDM model with the same
precision (considering only statistical uncertainties) as current surveys that use Type Ia supernovae, while providing a factor of
2–3 improvement in the precision of the constraints on the time variation of dark energy, w0 and wa. This paper represents the
proof of concept for superluminous supernova cosmology, and demonstrates they can provide an independent test of cosmology
in the high-redshift (z > 1) universe.EU/FP7-ERC grant 615929STFC grant ST/N000688/1Faculty of Technology at the
University of PortsmouthEuropean Union’s
Horizon 2020 Framework Programme under the Marie Skłodowska-
Curie grant agreement no. 839090Spanish grant PGC2018-095317-B-C21 within
the European Funds for Regional Development (FEDER)U.S. Department
of EnergyU.S. National Science FoundationMinistry
of Science and Education of SpainScience and Technology
Facilities Council of the United KingdomHigher Education
Funding Council for EnglandNational Center for Supercomputing
Applications at the University of Illinois at Urbana-Champaign,Kavli Institute of Cosmological Physics at the University of
ChicagoCenter for Cosmology and Astro-Particle Physics at
the Ohio State UniversityMitchell Institute for Fundamental
Physics and Astronomy at Texas A&M University, Financiadora
de Estudos e Projetos, Fundacão Carlos Chagas Filho de Amparo
`a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de
Desenvolvimento Científico e Tecnológico and the Ministério da
Ciencia, Tecnologia e InovacãoDeutsche ForschungsgemeinschaftCollaborating Institutions in the Dark Energy Survey.National Science Foundation under grant numbers AST-1138766
and AST-1536171.T MINECO under grants AYA2015-
71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-
2016-0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union.CERCA program of the Generalitat de Catalunya.European Research
Council under the European Union Seventh Framework Programme
(FP7/2007-2013) including ERC grant agreements 240672, 291329,
and 306478.Australian Research
Council Centre of Excellence for All-skyAstrophysics (CAASTRO),
through project number CE110001020Brazilian Instituto
Nacional de Ciˆencia e Tecnologia (INCT) e-Universe (CNPq grant
465376/2014-2)Fermi Research Alliance, LLC
under Contract No.DE-AC02-07CH11359 with theU.S.Department
of Energy, Office of Science, Office of High Energy Physic
The Atacama Cosmology Telescope: A Catalog of >4000 Sunyaev–Zel’dovich Galaxy Clusters
We present a catalog of 4195 optically confirmed Sunyaev–Zel'dovich (SZ) selected galaxy clusters detected with signal-to-noise ratio >4 in 13,211 deg2 of sky surveyed by the Atacama Cosmology Telescope (ACT). Cluster candidates were selected by applying a multifrequency matched filter to 98 and 150 GHz maps constructed from ACT observations obtained from 2008 to 2018 and confirmed using deep, wide-area optical surveys. The clusters span the redshift range 0.04 1 clusters, and a total of 868 systems are new discoveries. Assuming an SZ signal versus mass-scaling relation calibrated from X-ray observations, the sample has a 90% completeness mass limit of M500c > 3.8 × 1014 M⊙, evaluated at z = 0.5, for clusters detected at signal-to-noise ratio >5 in maps filtered at an angular scale of 2farcm4. The survey has a large overlap with deep optical weak-lensing surveys that are being used to calibrate the SZ signal mass-scaling relation, such as the Dark Energy Survey (4566 deg2), the Hyper Suprime-Cam Subaru Strategic Program (469 deg2), and the Kilo Degree Survey (825 deg2). We highlight some noteworthy objects in the sample, including potentially projected systems, clusters with strong lensing features, clusters with active central galaxies or star formation, and systems of multiple clusters that may be physically associated. The cluster catalog will be a useful resource for future cosmological analyses and studying the evolution of the intracluster medium and galaxies in massive clusters over the past 10 Gyr
First cosmology results using SNe Ia from the dark energy survey: analysis, systematic uncertainties, and validation
International audienceWe present the analysis underpinning the measurement of cosmological parameters from 207 spectroscopically classified type Ia supernovae (SNe Ia) from the first three years of the Dark Energy Survey Supernova Program (DES-SN), spanning a redshift range of 0.01
Separation of the Longitudinal and Transverse Cross Sections in the p(ee'K)Lambda and p(ee'K)Sigma Reactions
We report measurements of cross sections for the reaction p(e,e'K)Y, for both
the Lambda and Sigma_0 hyperon states, at an invariant mass of W=1.84 GeV and
four-momentum transfers 0.5<Q2<2 (GeV/c)2. Data were taken for three values of
virtual photon polarization, allowing the decomposition of the cross sections
into longitudinal and transverse components. The Lambda data is a revised
analysis of prior work, whereas the Sigma_0 results have not been previously
reported.Comment: 17 pages, 18 figures, REVTEX 4, submitted to Physical Review
First cosmology results using type Ia supernovae from the Dark Energy Survey: constraints on cosmological parameters
We present the first cosmological parameter constraints using measurements of type Ia supernovae (SNe Ia) from the Dark Energy Survey Supernova Program (DES-SN). The analysis uses a subsample of 207 spectroscopically confirmed SNe Ia from the first three years of DES-SN, combined with a low-redshift sample of 122 SNe from the literature. Our "DES-SN3YR" result from these 329 SNe Ia is based on a series of companion analyses and improvements covering SN Ia discovery, spectroscopic selection, photometry, calibration, distance bias corrections, and evaluation of systematic uncertainties. For a flat LCDM model we find a matter density Omega_m = 0.331 +_ 0.038. For a flat wCDM model, and combining our SN Ia constraints with those from the cosmic microwave background (CMB), we find a dark energy equation of state w = -0.978 +_ 0.059, and Omega_m = 0.321 +_ 0.018. For a flat w0waCDM model, and combining probes from SN Ia, CMB and baryon acoustic oscillations, we find w0 = -0.885 +_ 0.114 and wa = -0.387 +_ 0.430. These results are in agreement with a cosmological constant and with previous constraints using SNe Ia (Pantheon, JLA)
DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys
We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3)
and the Kilo-Degree Survey (KiDS-1000) in a collaborative effort between the
two survey teams. We find consistent cosmological parameter constraints between
DES Y3 and KiDS-1000 which, when combined in a joint-survey analysis, constrain
the parameter with a mean value of
. The mean marginal is lower than the maximum a
posteriori estimate, , owing to skewness in the marginal
distribution and projection effects in the multi-dimensional parameter space.
Our results are consistent with constraints from observations of the
cosmic microwave background by Planck, with agreement at the level.
We use a Hybrid analysis pipeline, defined from a mock survey study quantifying
the impact of the different analysis choices originally adopted by each survey
team. We review intrinsic alignment models, baryon feedback mitigation
strategies, priors, samplers and models of the non-linear matter power
spectrum.Comment: 38 pages, 21 figures, 15 tables, submitted to the Open Journal of
Astrophysics. Watch the core team discuss this analysis at
https://cosmologytalks.com/2023/05/26/des-kid
Test beam performance measurements for the Phase I upgrade of the CMS pixel detector
A new pixel detector for the CMS experiment was built in order to cope with the instantaneous luminosities anticipated for the Phase I Upgrade of the LHC. The new CMS pixel detector provides four-hit tracking with a reduced material budget as well as new cooling and powering schemes. A new front-end readout chip mitigates buffering and bandwidth limitations, and allows operation at low comparator thresholds. In this paper, comprehensive test beam studies are presented, which have been conducted to verify the design and to quantify the performance of the new detector assemblies in terms of tracking efficiency and spatial resolution. Under optimal conditions, the tracking efficiency is (99.95 ± 0.05) %, while the intrinsic spatial resolutions are (4.80 ± 0.25) μm and (7.99 ± 0.21) μm along the 100 μm and 150 μm pixel pitch, respectively. The findings are compared to a detailed Monte Carlo simulation of the pixel detector and good agreement is found.Peer reviewe
- …