415 research outputs found

    Economic crisis and the construction of a neo-liberal regulatory regime in Korea

    Get PDF
    A consistent theme of the literature on the ontology of the 1997 South Korean crisis is the key role played by regulatory failures and the growing weakness of the state. This paper seeks to briefly highlight both the insights and the limitations of this approach to understanding the crisis. Having done so, we shall set out the argument that the crisis created an opportunity for reformist Korean élites to advance their longstanding, but previously frustrated, project to create a comprehensive unambiguously neo-liberal regulatory regime. This paper will also seek to highlight the implications of our reading of the development of the Korean political economy for broader debates on economic liberalisation, crisis and the future of the developmental state

    Classical dynamics of a two-species Bose-Einstein condensate in the presence of nonlinear maser processes

    Full text link
    The stability analysis of a generalized Dicke model, in the semi-classical limit, describing the interaction of a two-species Bose-Einstein condensate driven by a quantized field in the presence of Kerr and spontaneous parametric processes is presented. The transitions from Rabi to Josephson dynamics are identified depending on the relative value of the involved parameters. Symmetry-breaking dynamics are shown for both types of coherent oscillations due to the quantized field and nonlinear optical processes.Comment: 12 pages, 5 figures. Accepted for publication as chapter in "Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations in Nonlinear Systems

    miRNAs are essential for the regulation of the PI3K/AKT/FOXO pathway and receptor editing during B cell maturation

    Get PDF
    B cell development is a tightly regulated process dependent on sequential rearrangements of immunoglobulin loci that encode the antigen receptor. To elucidate the role of microRNAs (miRNAs) in the orchestration of B cell development, we ablated all miRNAs at the earliest stage of B cell development by conditionally targeting the enzymes critical for RNAi in early B cell precursors. Absence of any one of these enzymes led to a block at the pro- to pre-B cell transition due to increased apoptosis and a failure of pre-B cells to proliferate. Expression of a Bcl2 transgene allowed for partial rescue of B cell development, however, the majority of the rescued B cells had low surface immunoglobulin expression with evidence of ongoing light chain editing. Our analysis revealed that miRNAs are critical for the regulation of the PTEN-AKT-FOXO1 pathway that in turn controls Rag expression during B cell development

    The Kuiper Belt and Other Debris Disks

    Full text link
    We discuss the current knowledge of the Solar system, focusing on bodies in the outer regions, on the information they provide concerning Solar system formation, and on the possible relationships that may exist between our system and the debris disks of other stars. Beyond the domains of the Terrestrial and giant planets, the comets in the Kuiper belt and the Oort cloud preserve some of our most pristine materials. The Kuiper belt, in particular, is a collisional dust source and a scientific bridge to the dusty "debris disks" observed around many nearby main-sequence stars. Study of the Solar system provides a level of detail that we cannot discern in the distant disks while observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book "Astrophysics in the Next Decade

    Influence of fast interstellar gas flow on dynamics of dust grains

    Full text link
    The orbital evolution of a dust particle under the action of a fast interstellar gas flow is investigated. The secular time derivatives of Keplerian orbital elements and the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle's orbit are derived. The secular time derivatives of the semi-major axis, eccentricity, and of the radial, transversal, and normal components of the gas flow velocity vector at the pericentre of the particle's orbit constitute a system of equations that determines the evolution of the particle's orbit in space with respect to the gas flow velocity vector. This system of differential equations can be easily solved analytically. From the solution of the system we found the evolution of the Keplerian orbital elements in the special case when the orbital elements are determined with respect to a plane perpendicular to the gas flow velocity vector. Transformation of the Keplerian orbital elements determined for this special case into orbital elements determined with respect to an arbitrary oriented plane is presented. The orbital elements of the dust particle change periodically with a constant oscillation period or remain constant. Planar, perpendicular and stationary solutions are discussed. The applicability of this solution in the Solar system is also investigated. We consider icy particles with radii from 1 to 10 micrometers. The presented solution is valid for these particles in orbits with semi-major axes from 200 to 3000 AU and eccentricities smaller than 0.8, approximately. The oscillation periods for these orbits range from 10^5 to 2 x 10^6 years, approximately.Comment: 22 pages, 3 figures; Accepted for publication in Celestial Mechanics and Dynamical Astronom

    Effects of coastal urbanization on salt-marsh faunal assemblages in the northern Gulf of Mexico

    Get PDF
    Author Posting. © American Fisheries Society, 2014. This article is posted here by permission of American Fisheries Society for personal use, not for redistribution. The definitive version was published in Marine and Coastal Fisheries: Dynamics, Management, and Ecosystem Science 6 (2014): 89-107, doi:10.1080/19425120.2014.893467.Coastal landscapes in the northern Gulf of Mexico, specifically the Mississippi coast, have undergone rapid urbanization that may impact the suitability of salt-marsh ecosystems for maintaining and regulating estuarine faunal communities. We used a landscape ecology approach to quantify the composition and configuration of salt-marsh habitats and developed surfaces at multiple spatial scales surrounding three small, first-order salt-marsh tidal creeks arrayed along a gradient of urbanization in two river-dominated estuaries. From May 3 to June 4, 2010, nekton and macroinfauna were collected weekly at all six sites. Due to the greater abundance of grass shrimp Palaemonetes spp., brown shrimp Farfantepenaeus aztecus, blue crab Callinectes sapidus, Gulf Menhaden Brevoortia patronus, and Spot Leiostomus xanthurus, tidal creeks in intact natural (IN) salt-marsh landscapes supported a nekton assemblage that was significantly different from those in partially urbanized (PU) or completely urbanized (CU) salt-marsh landscapes. However, PU landscapes still supported an abundant nekton assemblage. In addition, the results illustrated a linkage between life history traits and landscape characteristics. Resident and transient nekton species that have specific habitat requirements are more likely to be impacted in urbanized landscapes than more mobile species that are able to exploit multiple habitats. Patterns were less clear for macroinfaunal assemblages, although they were comparatively less abundant in CU salt-marsh landscapes than in either IN or PU landscapes. The low abundance or absence of several macroinfaunal taxa in CU landscapes may be viewed as an additional indicator of poor habitat quality for nekton. The observed patterns also suggested that benthic sediments in the CU salt-marsh landscapes were altered in comparison with IN or PU landscapes. The amount of developed shoreline and various metrics related to salt marsh fragmentation were important drivers of observed patterns in nekton and macroinfaunal assemblages

    Quantum walks: a comprehensive review

    Full text link
    Quantum walks, the quantum mechanical counterpart of classical random walks, is an advanced tool for building quantum algorithms that has been recently shown to constitute a universal model of quantum computation. Quantum walks is now a solid field of research of quantum computation full of exciting open problems for physicists, computer scientists, mathematicians and engineers. In this paper we review theoretical advances on the foundations of both discrete- and continuous-time quantum walks, together with the role that randomness plays in quantum walks, the connections between the mathematical models of coined discrete quantum walks and continuous quantum walks, the quantumness of quantum walks, a summary of papers published on discrete quantum walks and entanglement as well as a succinct review of experimental proposals and realizations of discrete-time quantum walks. Furthermore, we have reviewed several algorithms based on both discrete- and continuous-time quantum walks as well as a most important result: the computational universality of both continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing Journa

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore