212 research outputs found

    The effect of pressure and temperature on the resistivity of rocks /

    Get PDF

    Pleurocidin-family cationic antimicrobial peptides are cytolytic for breast carcinoma cells and prevent growth of tumor xenografts

    Get PDF
    Introduction: Cationic antimicrobial peptides (CAPs) defend against microbial pathogens; however, certain CAPs also exhibit anticancer activity. The purpose of this investigation was to determine the effect of the pleurocidin-family CAPs, NRC-03 and NRC-07, on breast cancer cells. Methods: MTT (3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) and acid phosphatase cell-viability assays were used to assess NRC-03- and NRC-07-mediated killing of breast carcinoma cells. Erythrocyte lysis was determined with hemolysis assay. NRC-03 and NRC-07 binding to breast cancer cells and normal fibroblasts was assessed with fluorescence microscopy by using biotinylated-NRC-03 and -NRC-07. Lactate dehydrogenase-release assays and scanning electron microscopy were used to evaluate the effect of NRC-03 and NRC-07 on the cell membrane. Flow-cytometric analysis of 3,3'-dihexyloxacarbocyanine iodide- and dihydroethidium-stained breast cancer cells was used to evaluate the effects of NRC-03 and NRC-07 on mitochondrial membrane integrity and reactive oxygen species (ROS) production, respectively. Tumoricidal activity of NRC-03 and NRC-07 was evaluated in NOD SCID mice bearing breast cancer xenografts. Results: NRC-03 and NRC-07 killed breast cancer cells, including drug-resistant variants, and human mammary epithelial cells but showed little or no lysis of human dermal fibroblasts, umbilical vein endothelial cells, or erythrocytes. Sublethal doses of NRC-03 and, to a lesser extent, NRC-07 significantly reduced the median effective concentration (EC 50) of cisplatin for breast cancer cells. NRC-03 and NRC-07 bound to breast cancer cells but not fibroblasts, suggesting that killing required peptide binding to target cells. NRC-03- and NRC-07-mediated killing of breast cancer cells correlated with expression of several different anionic cell-surface molecules, suggesting that NRC-03 and NRC-07 bind to a variety of negatively-charged cell-surface molecules. NRC-03 and NRC-07 also caused significant and irreversible cell-membrane damage in breast cancer cells but not in fibroblasts. NRC-03- and NRC-07-mediated cell death involved, but did not require, mitochondrial membrane damage and ROS production. Importantly, intratumoral administration of NRC-03 and NRC-07 killed breast cancer cells grown as xenografts in NOD SCID mice. Conclusions: These findings warrant the development of stable and targeted forms of NRC-03 and/or NRC-07 that might be used alone or in combination with conventional chemotherapeutic drugs for the treatment of breast cancer.Peer reviewed: YesNRC publication: Ye

    Extended defects in natural diamonds: Atomic Force Microscopy investigation

    Full text link
    Surfaces of natural diamonds etched in high-pressure experiments in H2O, CO2 and H2O-NaCl fluids were investigated using Atomic Force Microscopy. Partial dissolution of the crystals produced several types of surface features including the well-known trigons and hillocks and revealed several new types of defects. Besides well-known trigons and dissolution hillocks several new types of defects are observed. The most remarkable ones are assigned to anelastic twins of several types. The observation of abundant microtwins, ordering of hillocks and presence of defects presumably related to knots of branched dislocations suggests importance of post-growth deformation events on formation of diamond microstructure. This work confirms previous reports of ordering of extended defects in some deformed diamonds. In addition, the current work shows that natural diamonds deform not only by dislocation mechanism and slip, but also but mechanical twinning. The dominant mechanism should depend on pressure-temperature-stress conditions during diamond transport from the formation domain to the Earth surface.Comment: Submitted to special issue (1st European Mineralogical congress, Frankfurt, Germany, September 2012) of European Journal of Mineralogy. 21 page, 9 figure

    Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems

    Get PDF
    Curcumin is a perspective drug candidate with pleiotropic antineoplastic activity, whose exceptionally low aqueous solubility and poor pharmacokinetic properties have hampered its development beyond the preclinical level. A possible approach to overcome these limitations is the encapsulation of curcumin into nano-carriers, incl. liposomes. The present contribution is focused on feasibility of using hybrid pH-sensitive liposomes, whereby curcumin is entrapped as a free drug and as a water soluble inclusion complex with PEGylated tert-butylcalix[4]arene, which allows the drug to occupy both the phospholipid membranes and the aqueous core of liposomes. The inclusion complexes were encapsulated in dipalmithoylphosphathydilcholine:cholesterol liposomes, whose membranes were grafted with a poly(isoprene-b-acrylic acid) diblock copolymer to confer pH-sensitivity. The liposomes were characterized by DLS, ζ-potential measurements, cryo-TEM, curcumin encapsulation efficacy, loading capacity, and in vitro release as a function of pH. Free and formulated curcumin were further investigated for cytotoxicity, apoptosis-induction and caspase-8, and 9 activation in chemosensitive HL-60 and its resistant sublines HL-60/Dox and HL-60/CDDP. Formulated curcumin was superior cytotoxic and apoptogenic agent vs. the free drug. The mechanistic assay demonstrated that the potent proapoptotic effects of pH-sensitive liposomal curcumin presumably mediated via recruitment of both extrinsic and intrinsic apoptotic pathways in both HL-60 and HL-60/CDDP cells

    Host Antimicrobial Peptides: the promise of new treatment strategies against Tuberculosis

    Get PDF
    Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics

    The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production

    Get PDF
    Abstract Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies

    Curcumin loaded pH-sensitive hybrid lipid/block copolymer nanosized drug delivery systems

    Get PDF
    Curcumin is a perspective drug candidate with pleiotropic antineoplastic activity, whose exceptionally low aqueous solubility and poor pharmacokinetic properties have hampered its development beyond the preclinical level. A possible approach to overcome these limitations is the encapsulation of curcumin into nano-carriers, incl. liposomes. The present contribution is focused on feasibility of using hybrid pH-sensitive liposomes, whereby curcumin is entrapped as a free drug and as a water soluble inclusion complex with PEGylated tert-butylcalix[4]arene, which allows the drug to occupy both the phospholipid membranes and the aqueous core of liposomes. The inclusion complexes were encapsulated in dipalmithoylphosphathydilcholine:cholesterol liposomes, whose membranes were grafted with a poly(isoprene-b-acrylic acid) diblock copolymer to confer pH-sensitivity. The liposomes were characterized by DLS, ζ-potential measurements, cryo-TEM, curcumin encapsulation efficacy, loading capacity, and in vitro release as a function of pH. Free and formulated curcumin were further investigated for cytotoxicity, apoptosis-induction and caspase-8, and 9 activation in chemosensitive HL-60 and its resistant sublines HL-60/Dox and HL-60/CDDP. Formulated curcumin was superior cytotoxic and apoptogenic agent vs. the free drug. The mechanistic assay demonstrated that the potent proapoptotic effects of pH-sensitive liposomal curcumin presumably mediated via recruitment of both extrinsic and intrinsic apoptotic pathways in both HL-60 and HL-60/CDDP cells
    • …
    corecore