69 research outputs found

    The Immune System Out of Shape?

    Get PDF
    During pregnancy, a fetus is protected from a large part of the pathogens of the environment. As a result, a newborn’s immune system is immature and unexperienced, and mainly composed of innate leukocytes and naive lymphocytes. Immunological memory, and concomitant functional immunity, needs to be formed in response to various pathogen encounters. Most of the immune maturation occurs during the first few years of childhood, during which the child comes into contact with a large variety of pathogens. Though most of the pathogens are cleared, after which life-long immunity is generated, some viruses evade virus clearance and induce a state of latency and viral persistence. Due to their continuous presence and pressure on the immune system, persistent viral infections are known to have a strong impact on the immune system of especially elderly. The research described in this thesis was set out to characterize immune maturation during early childhood, in response to various environmental determinants with a specific focus on persistent viral infections. Combined, these studies underline the complexity of the childhood immune dynamics, and stress the plasticity of the childhood immune system upon viral infection with herpesviruses and the HIV virus. Children seem to control persistent herpesvirus infections without the negative effects that have been observed in elderly. This information will be important, not only for our basic understanding of healthy immune maturation, but might also contribute to our understanding of immune dysfunction during chronic immune stimulation and provide more understanding of the processes that underlie the formation of long-lasting immunity

    Decreased memory B cells and increased CD8 memory T cells in blood of breastfed children

    Get PDF
    Background: Breastfeeding provides a protective effect against infectious diseases in infancy. Still, immunological evidence for enhanced adaptive immunity in breastfed children remains inconclusive. Objective: To determine whether breastfeeding affects B- and T-cell memory in the first years of life. Methods: We performed immunophenotypic analysis on blood samples within a population-based prospective cohort study. Participants included children at 6 months (n=258), 14 months (n=166), 25 months (n=112) and 6 years of age (n=332) with both data on breastfeeding and blood lymphocytes. Total B- and T-cell numbers and their memory subsets were determined with 6-color flow cytometry. Mothers completed questionnaires on breastfeeding when their children were aged 2, 6, and 12 months. Multiple linear regression models with adjustments for potential confounders were performed. Results: Per month continuation of breastfeeding, a 3% (95% CI -6, -1) decrease in CD27+IgM+, a 2% (95 CI % -5, -1) decrease in CD27+IgA+ and a 2% (95% CI -4, -1) decrease in CD27-IgG+ memory B cell numbers were observed at 6 months of age. CD8 T-cell numbers at 6 months of age were 20% (95% CI 3, 37) higher in breastfed than in non-breastfed infants. This was mainly found for central memory CD8 T cells and associated with exposure to breast milk, rather than duration. The same trend was observed at 14 months, but associations disappeared at older ages. Conclusions: Longer breastfeeding is associated with increased CD8 T-cell memory, but not B-cell memory numbers in the first 6 months of life. This transient skewing towards T cell memory might contribute to the protective effect against infectious diseases in infancy

    A Transient Sub-Eddington Black Hole X-ray Binary Candidate in the Dust Lanes of Centaurus A

    Get PDF
    We report the discovery of a bright X-ray transient, CXOU J132527.6-430023, in the nearby early-type galaxy NGC 5128. The source was first detected over the course of five Chandra observations in 2007, reaching an unabsorbed outburst luminosity of 1-2*10^38 erg/s in the 0.5-7.0 keV band before returning to quiescence. Such luminosities are possible for both stellar-mass black hole and neutron star X-ray binary transients. Here, we attempt to characterize the nature of the compact object. No counterpart has been detected in the optical or radio sky, but the proximity of the source to the dust lanes allows for the possibility of an obscured companion. The brightness of the source after a >100 fold increase in X-ray flux makes it either the first confirmed transient non-ULX black hole system in outburst to be subject to detailed spectral modeling outside the Local Group, or a bright (>10^38 erg/s) transient neutron star X-ray binary, which are very rare. Such a large increase in flux would appear to lend weight to the view that this is a black hole transient. X-ray spectral fitting of an absorbed power law yielded unphysical photon indices, while the parameters of the best-fit absorbed disc blackbody model are typical of an accreting ~10 Msol black hole in the thermally dominant state.Comment: 8 pages, 6 figures, accepted for publication in Ap

    10Kin1day: A Bottom-Up Neuroimaging Initiative.

    Get PDF
    We organized 10Kin1day, a pop-up scientific event with the goal to bring together neuroimaging groups from around the world to jointly analyze 10,000+ existing MRI connectivity datasets during a 3-day workshop. In this report, we describe the motivation and principles of 10Kin1day, together with a public release of 8,000+ MRI connectome maps of the human brain

    Cortical thickness across the lifespan: Data from 17,075 healthy individuals aged 3-90 years

    Get PDF
    Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large‐scale studies. In response, we used cross‐sectional data from 17,075 individuals aged 3–90 years from the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to infer age‐related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta‐analysis and one‐way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3–90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta‐Analysis (ENIGMA) Consortium to examine age‐related trajectories inferred from cross‐sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter‐individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age‐related morphometric patterns
    corecore