75 research outputs found

    Platelet glycoprotein VI cluster size is related to thrombus formation and phosphatidylserine exposure in collagen-adherent platelets under arterial shear

    Get PDF
    Background: Collagen-induced platelet activation is predominantly mediated by glycoprotein (GP) VI through formation of receptor clusters that coincide with the accumulation of signaling molecules and are hypothesized to drive strong and sustained platelet activation. Objectives: To determine the importance of GPVI clusters for thrombus formation in whole blood under shear. Methods: We utilized whole blood microfluidics and an anti-GPVI nanobody (Nb), Nb28, labeled with AlexaFluor 488, to assess the distribution of GPVI on the surface of platelets adhering to a range of collagen-like substrates with different platelet activation potentials. Results: Automated analysis of GPVI surface distribution on platelets supported the hypothesis that there is a relationship between GPVI cluster formation, thrombus size, and phosphatidylserine (PS) exposure. Substrates that supported the formation of macroclusters also induced significantly bigger aggregates, with increased amounts of PS-exposing platelets in comparison to substrates where no GPVI clusters were detected. Furthermore, we demonstrate that only direct inhibition of GPVI binding, but not of downstream signaling, is able to disrupt cluster formation. Conclusion: Labeled anti-GPVI Nb28 permits visualization of GPVI clustering under flow conditions. Furthermore, whilst inhibition of downstream signaling does not affect clustering, it does prevent thrombus formation. Therefore, GPVI macroclustering is a prerequisite for thrombus formation and platelet activation, namely, PS exposure, on highly GPVI-dependent collagen surfaces

    Restraining of glycoprotein VI- and integrin α2β1-dependent thrombus formation y platelet PECAM1

    Get PDF
    The platelet receptors, glycoprotein VI (GPVI) and integrin α2β1 jointly control collagen-dependent thrombus formation via protein tyrosine kinases. It is unresolved to which extent the ITIM (immunoreceptor tyrosine-based inhibitory motif) receptor PECAM1 and its downstream acting protein tyrosine phosphatase PTPN11 interfere in this process. Here, we hypothesized that integrin α2β1 has a co-regulatory role in the PECAM1- and PTPN11-dependent restraint of thrombus formation. We investigated platelet activation under flow on collagens with a different GPVI dependency and using integrin α2β1 blockage. Blood was obtained from healthy subjects and from patients with Noonan syndrome with a gain-of-function mutation of PTPN11 and variable bleeding phenotype. On collagens with decreasing GPVI activity (types I, III, IV), the surface-dependent inhibition of PECAM1 did not alter thrombus parameters using control blood. Blockage of α2β1 generally reduced thrombus parameters, most effectively on collagen IV. Strikingly, simultaneous inhibition of PECAM1 and α2β1 led to a restoration of thrombus formation, indicating that the suppressing signaling effect of PECAM1 is masked by the platelet-adhesive receptor α2β1. Blood from 4 out of 6 Noonan patients showed subnormal thrombus formation on collagen IV. In these patients, effects of α2β1 blockage were counterbalanced by PECAM1 inhibition to a normal phenotype. In summary, we conclude that the suppression of GPVI-dependent thrombus formation by either PECAM1 or a gain-of-function of PTPN11 can be overruled by α2β1 engagement

    Antibodies against Platelet Glycoproteins in Clinically Suspected VITT Patients

    Get PDF
    Vaccine-induced thrombotic thrombocytopenia (VITT) is a rare but severe complication following COVID-19 vaccination, marked by thrombocytopenia and thrombosis. Analogous to heparin-induced thrombocytopenia (HIT), VITT shares similarities in anti-platelet factor 4 (PF4) IgG-mediated platelet activation via the FcγRIIa. To investigate the involvement of platelet-antibodies in VITT, we analyzed the presence of platelet-antibodies directed against glycoproteins (GP)IIb/IIIa, GPV and GPIb/IX in the serum of 232 clinically suspected VITT patients determined based on (suspicion of) occurrence of thrombocytopenia and/or thrombosis in relation to COVID-19 vaccination. We found that 19% of clinically suspected VITT patients tested positive for anti-platelet GPs: 39%, 32% and 86% patients tested positive for GPIIb/IIIa, GPV and GPIb/IX, respectively. No HIT-like VITT patients (with thrombocytopenia and thrombosis) tested positive for platelet-antibodies. Therefore, it seems unlikely that platelet-antibodies play a role in HIT-like anti-PF4-mediated VITT. Platelet-antibodies were predominantly associated with the occurrence of thrombocytopenia. We found no association between the type of vaccination (adenoviral vector vaccine versus mRNA vaccine) or different vaccines (ChAdOx1 nCoV-19, Ad26.COV2.S, mRNA-1273, BTN162b2) and the development of platelet-antibodies. It is essential to conduct more research on the pathophysiology of VITT, to improve diagnostic approaches and identify preventive and therapeutic strategies.</p

    A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders.

    Get PDF
    Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD.This study, including the enrollment of cases, sequencing, and analysis received support from the National Institute for Health Research (NIHR) BioResource–Rare Diseases. The NIHR BioResource is funded by the NIHR (http://www.nihr.ac.uk). Research in the Ouwehand Laboratory is also supported by grants from Bristol-Myers Squibb, the British Heart Foundation, the British Society of Haematology, the European Commission, the MRC, the NIHR, and the Wellcome Trust; the laboratory also receives funding from National Health Service Blood and Transplant (NHSBT). The clinical fellows received funding from the MRC (C.L. and S.K.W.); the NIHR–Rare Diseases Translational Research Collaboration (S. Sivapalaratnam); and the British Society for Haematology and National Health Service Blood and Transplant (T.K.B.).This is the author accepted manuscript. The final version is available from American Society of Hematology via http://dx.doi.org/10.1182/blood-2015-12-688267

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Blood coagulation and beyond: Position paper from the Fourth Maastricht Consensus Conference on Thrombosis

    Get PDF
    The 4th Maastricht Consensus Conference on Thrombosis (MCCT), included the following themes: Theme 1: The coagulome as a critical driver of cardiovascular disease Blood coagulation proteins also play divergent roles in biology and pathophysiology, related to specific organs, including brain, heart, bone marrow and kidney. Four investigators shared their views on these organ-specific topics. Theme 2: Novel mechanisms of thrombosis Mechanisms linking factor XII to fibrin, including their structural and physical properties, contribute to thrombosis, which is also affected by variation in microbiome status. Virus infections associated-coagulopathies perturb the hemostatic balance resulting in thrombosis and/or bleeding. Theme 3: How to limit bleeding risks: insights from translational studies This theme included state of the art methodology for exploring the contribution of genetic determinants of a bleeding diathesis; determination of polymorphisms in genes that control the rate of metabolism by the liver of P2Y12 inhibitors, to improve safety of antithrombotic therapy. Novel reversal agents for direct oral anticoagulants are discussed. Theme 4: Hemostasis in extracorporeal systems: how to utilize ex vivo models? Perfusion flow chamber and nanotechnology developments are developed for studying bleeding and thrombosis tendencies. Vascularised organoids are utilized for disease modeling and drug development studies. Strategies for tackling extracorporeal membrane oxygenation (ECMO) associated coagulopathy are discussed. Theme 5: Clinical dilemmas in thrombosis and antithrombotic management Plenary presentations addressed controversial areas, ie thrombophilia testing, thrombosis risk assessment in hemophilia, novel antiplatelet strategies and clinically tested factor XI(a) inhibitors,both possibly with reduced bleeding risk. Finally, Covid-19 associated coagulopathy is revisited

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data.

    Get PDF
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype

    Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease

    Get PDF
    Inherited retinal disease is a common cause of visual impairment and represents a highly heterogeneous group of conditions. Here, we present findings from a cohort of 722 individuals with inherited retinal disease, who have had whole-genome sequencing (n = 605), whole-exome sequencing (n = 72), or both (n = 45) performed, as part of the NIHR-BioResource Rare Diseases research study. We identified pathogenic variants (single-nucleotide variants, indels, or structural variants) for 404/722 (56%) individuals. Whole-genome sequencing gives unprecedented power to detect three categories of pathogenic variants in particular: structural variants, variants in GC-rich regions, which have significantly improved coverage compared to whole-exome sequencing, and variants in non-coding regulatory regions. In addition to previously reported pathogenic regulatory variants, we have identified a previously unreported pathogenic intronic variant in CHM\textit{CHM} in two males with choroideremia. We have also identified 19 genes not previously known to be associated with inherited retinal disease, which harbor biallelic predicted protein-truncating variants in unsolved cases. Whole-genome sequencing is an increasingly important comprehensive method with which to investigate the genetic causes of inherited retinal disease.This work was supported by The National Institute for Health Research England (NIHR) for the NIHR BioResource – Rare Diseases project (grant number RG65966). The Moorfields Eye Hospital cohort of patients and clinical and imaging data were ascertained and collected with the support of grants from the National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital, National Health Service Foundation Trust, and UCL Institute of Ophthalmology, Moorfields Eye Hospital Special Trustees, Moorfields Eye Charity, the Foundation Fighting Blindness (USA), and Retinitis Pigmentosa Fighting Blindness. M.M. is a recipient of an FFB Career Development Award. E.M. is supported by UCLH/UCL NIHR Biomedical Research Centre. F.L.R. and D.G. are supported by Cambridge NIHR Biomedical Research Centre
    corecore