6 research outputs found

    The Circulatory and Metabolic Responses to Hypoxia in Humans - With Special Reference to Adipose Tissue Physiology and Obesity

    Get PDF
    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology

    Different Predictors of Right and Left Ventricular Metabolism in Healthy Middle-Aged Men

    Get PDF
    Dysfunction of the right ventricle (RV) plays a crucial role in the outcome of various cardiovascular diseases. Previous studies on RV metabolism are sparse although evidence implies it may differ from left ventricular (LV) metabolism. Therefore, the aims of this study were (1) to determine predictors of RV glucose uptake (GU) and free fatty acid uptake (FFAU) and (2) to compare them to predictors of LV metabolism in healthy middle-aged men. Altogether 28 healthy, sedentary, middle-aged (40-55 years) men were studied. Insulin-stimulated GU and fasting FFAU were measured by positron emission tomography and RV and LV structural and functional parameters by cardiac magnetic resonance. Several parameters related to whole-body health were also measured. Predictors of RV and LV metabolism were determined by pairwise correlation analysis, lasso regression models, and variable clustering using heatmap. RVGU was most strongly predicted by age and moderately by RV ejection fraction (EF). The strongest determinants of RVFFAU were exercise capacity (peak oxygen uptake), resting heart rate, LVEF, and whole body insulin stimulated glucose uptake rate. When considering LV metabolism, age and RVEF were associated also with LVGU. In addition, LVGU was strongly, and negatively, influenced by whole-body insulin-stimulated glucose uptake rate. LVFFAU was predicted only by LVEF. This study shows that while RV and LV metabolism have shared characteristics, they also have unique properties. Age of the subject should be taken into account when measuring myocardial glucose utilization. Ejection fraction is related to myocardial metabolism, and even so that RVEF may be more closely related to GU of both ventricles and LVEF to FFAU of both ventricles, a finding supporting the ventricular interdependence. However, only RV fatty acid utilization associates with exercise capacity so that better physical fitness in a relatively sedentary population is related with decreased RV fat metabolism. To conclude, this study highlights the need for further study designed specifically on less known RV as the results on LV metabolism and physiology may not be directly applicable to the RV.</p

    Intramyocellular lipid accumulation after sprint interval and moderate-intensity continuous training in healthy and diabetic subjects

    Get PDF
    The effects of sprint interval training (SIT) on intramyocellular (IMCL) and extramyocellular (EMCL) lipid accumulation are unclear. We tested the effects of SIT and moderate-intensity continuous training (MICT) on IMCL and EMCL accumulation in a randomized controlled setting in two different study populations; healthy untrained men (n 28) and subjects with type 2 diabetes (T2D) or prediabetes (n 26). Proton magnetic resonance spectroscopy (H-1 MRS) was used to determine IMCL and EMCL in the Tibialis anterior muscle (TA) before and after a 2-week exercise period. The exercise period comprised six sessions of SIT or MICT cycling on a cycle ergometer. IMCL increased after SIT compared to MICT (P = 0.042) in both healthy and T2D/prediabetic subjects. On EMCL the training intervention had no significant effect. In conclusion, IMCL serves as an important energy depot during exercise and can be extended by high intensity exercise. The effects of high intensity interval exercise on IMCL seem to be similar regardless of insulin sensitivity or the presence of T2D

    Sprint interval training decreases left-ventricular glucose uptake compared to moderate-intensity continuous training in subjects with type 2 diabetes or prediabetes

    Get PDF
    Type 2 diabetes mellitus (T2DM) is associated with reduced myocardial glucose uptake (GU) and increased free fatty acid uptake (FFAU). Sprint interval training (SIT) improves physical exercise capacity and metabolic biomarkers, but effects of SIT on cardiac function and energy substrate metabolism in diabetic subjects are unknown. We tested the hypothesis that SIT is more effective than moderate-intensity continuous training (MICT) on adaptations in left and right ventricle (LV and RV) glucose and fatty acid metabolism in diabetic subjects. Twenty-six untrained men and women with T2DM or prediabetes were randomized into two-week-long SIT (n = 13) and MICT (n = 13) interventions. Insulin-stimulated myocardial GU and fasted state FFAU were measured by positron emission tomography and changes in LV and RV structure and function by cardiac magnetic resonance. In contrast to our hypothesis, SIT significantly decreased GU compared to MICT in LV. FFAU of both ventricles remained unchanged by training. RV end-diastolic volume (EDV) and RV mass increased only after MICT, whereas LV EDV, LV mass, and RV and LV end-systolic volumes increased similarly after both training modes. As SIT decreases myocardial insulin-stimulated GU compared to MICT which may already be reduced in T2DM, SIT may be metabolically less beneficial than MICT for a diabetic heart

    Spezielle Pathologie des Gesichtsfeldes

    No full text
    corecore