33 research outputs found

    Red hot frogs:Identifying the Australian frogs most at risk of extinction

    Get PDF
    More than a third of the world’s amphibian species are listed as Threatened or Extinct, with a recent assessment identifying 45 Australian frogs (18.4% of the currently recognised species) as ‘Threatened’ based on IUCN criteria. We applied structured expert elicitation to 26 frogs assessed as Critically Endangered and Endangered to estimate their probability of extinction by 2040. We also investigated whether participant experience (measured as a self-assigned categorical score, i.e. ‘expert’ or ‘non-expert’) influenced the estimates. Collation and analysis of participant opinion indicated that eight species are at high risk (>50% chance) of becoming extinct by 2040, with the disease chytridiomycosis identified as the primary threat. A further five species are at moderate–high risk (30–50% chance), primarily due to climate change. Fourteen of the 26 frog species are endemic to Queensland, with many species restricted to small geographic ranges that are susceptible to stochastic events (e.g. a severe heatwave or a large bushfire). Experts were more likely to rate extinction probability higher for poorly known species (those with <10 experts), while non-experts were more likely to rate extinction probability higher for better-known species. However, scores converged following discussion, indicating that there was greater consensus in the estimates of extinction probability. Increased resourcing and management intervention are urgently needed to avert future extinctions of Australia’s frogs. Key priorities include developing and supporting captive management and establishing or extending in-situ population refuges to alleviate the impacts of disease and climate change

    A cross-sectional survey of the prevalence of environmental tobacco smoke preventive care provision by child health services in Australia

    Get PDF
    Background: Despite the need for a reduction in levels of childhood exposure to environmental tobacco smoke (ETS) being a recognised public health goal, the delivery of ETS preventive care in child health service settings remains a largely unstudied area. The purpose of this study was to determine the prevalence of ETS preventive care in child health services; differences in the provision of care by type of service; the prevalence of strategies to support such care; and the association between care support strategies and care provision. Method: One-hundred and fifty-one (83%) child health service managers within New South Wales, Australia completed a questionnaire in 2002 regarding the: assessment of parental smoking and child ETS exposure; the provision of parental smoking cessation and ETS-exposure reduction advice; and strategies used to support the provision of such care. Child health services were categorised based on their size and case-mix, and a chi-square analysis was performed to compare the prevalence of ETS risk assessment and ETS prevention advice between service types. Logistic regression analysis was used to examine associations between the existence of care support strategies and the provision of ETS risk assessment and ETS exposure prevention advice. Results: A significant proportion of services reported that they did not assess parental smoking status (26%), and reported that they did not assess the ETS exposure (78%) of any child. Forty four percent of services reported that they did not provide smoking cessation advice and 20% reported they did not provide ETS exposure prevention advice. Community based child and family health services reported a greater prevalence of ETS preventive care compared to other hospital based units. Less than half of the services reported having strategies to support the provision of ETS preventive care. The existence of such support strategies was associated with greater odds of care provision. Conclusions: The existence of major gaps in recommended ETS preventive care provision suggests a need for additional initiatives to increase such care delivery. The low prevalence of strategies that support such care delivery suggests a potential avenue to achieve this outcome

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Status and value of pollinators and pollination services

    Get PDF
    • Wild and managed pollinators are threatened by the individual and combined effects of multiple environmental pressures, although some of the pressures may be beneficial or provide opportunities for pollinators. Evidence for this is drawn from the many individual studies of these impacts at different locations in Britain and elsewhere along with global analyses of available data. The precise impact of these pressures, either individually or in combination, differs between pollinator groups due to variability in ecological and evolutionary traits that predispose a species to be resistant or vulnerable to environmental changes. • Since the 1950s, the distributions and diversity of some wild pollinator groups (e.g. bumble bees, solitary bees, butterflies and moths) have changed in Britain, with generally more areas showing a loss than an increase in species occurrence (the number of places a species is found) and diversity (number of species in a location). Hoverfly species losses have also occurred in specific locations, but there have been increases in diversity elsewhere. A recent analysis suggests, however, that the losses of wild pollinator and wild insect-pollinated plant diversity might be slowing. • However, a lack of regular and standardised monitoring of wild bee and hoverflies means that it is not possible to know whether their population sizes (abundance) are changing along with their diversity and occurrence. The number of managed honey bee colonies has generally fallen in recent decades, although there appears to have been a recent increase in England since 2007, such patterns are probably due to environmental pressures but also socio-economic factors affecting the level of bee keeping. • There remains much uncertainty (and research to be done) around the ecological and biological mechanisms connecting changes in pollinator biodiversity (abundance, composition, diversity, timing of life-cycle) with pollination processes and ultimately the quality and quantity of UK crop yields • Economic benefits are derived from both commercial and wild pollinators. These benefits are associated with market and non-market values. Market-valued impacts relate to the contribution of pollinators to crop production, whilst non-market values include the pollination of wild plants and the pleasure people derive from seeing bumblebees. In terms of informing policy, the most important concept is the marginal value of pollination services. Marginal values, which relate to the effect changes in the abundance of a pollinator species have on crop economic value, are likely to vary across crops, between pollinator species, over time and among locations. However, no robust empirical estimates of such marginal values exist for UK crops. • Wild pollinators also have an economic value in terms of the insurance service which they provide to farmers and growers, given the likelihood of sudden declines in commercial or managed pollinators due to outbreaks of pests and diseases. • Non-market economic values relate to the direct and indirect contributions which wild pollinators make to people’s well-being, as measured through the willingness-to-pay of citizens to prevent losses or to achieve gains in wild pollinator populations. That such values exist is demonstrated by public support for organisations such as the Bumblebee Conservation Trust. However, no robust empirical estimates of such values can be found to date. • Currently there is no all encompassing pollinator monitoring toolkit or single measure of status. Butterfly and moth species, for which there is are good data on abundance, cannot be used as a reliable proxy or indicator of decline in other pollinator species due to large ecological differences between them. Species richness and functional diversity (the species traits important to pollination contained in a community) of wild pollinators have a role in insuring pollination service delivery and can be derived from existing records of species occurrence. However, these data lack detail at small geographical and time scales, which makes them only a crude approximation of the distribution of potential ecosystem service providers in the British landscape. The abundance data needed to understand fully the delivery of pollination services to crops are totally lacking. • From the UK National Ecosystem Assessment three scenarios (Go with the Flow, National Security and Local Stewardship) were adapted to construct narratives up to 2025 outlining potential futures for pollinators and pollination benchmarked against the present day situation. • Regular and standardised monitoring of pollinator populations is needed to unequivocally establish whether wild insect pollinators are in decline or not, and what the predominant drivers are likely to be. • Currently the direction and magnitude of changes in pollinator biodiversity, the value and functional relationship of pollinators to agriculture from farm to national scales and how this biodiversity and linked ecosystem service will change in the future remain only partly understood

    Grazing alters insect visitation networks and plant mating systems

    Get PDF
    * Many flowering plant species have a facultative or obligate dependence on insect pollination for reproductive success. Anthropogenic disturbance may alter these species interactions, but the extent to which structural changes to plant-pollinator networks affect plant species mating systems is not well understood. * We used long-term livestock grazing of a birch wood ecosystem to test whether disturbance of this semi-natural habitat altered floral resources, the structure of plant–insect visitation networks and the mating system of a focal plant species, Cirsium palustre. * Grazed habitat had a higher species richness of floral resources for pollinators. Visitation networks in grazed habitats were larger, more diverse, with an increase in the number of pollinators per plant species. Controlling for sampling effects, however, showed networks in grazed habitats were less nested and revealed a positive correlation between network connectance and floral species richness. * Network connectance was negatively related to C. palustre outcrossing rate within grazed and ungrazed sites. However, on average, the effects of grazing, including greater mean connectance, produced higher overall outcrossing rates and more pollen donors compared with ungrazed habitat. The number of different pollen donors, spatial genetic structure and mating among close relatives were all correlated with greater extent of suitable C. palustre habitat in the landscape, consistent with the effects of increasing plant population size but limited seed dispersal. * Pre-adaptation of C. palustre to disturbance coupled with a preponderance of highly dispersive flies attracted to the greater food resources in grazed habitat is a likely mechanism underpinning this increased pollen transport. * Habitat modification by long-term mammalian grazing fundamentally shifted visitation network structure and the state of a plant mating system, indicating how ecosystem disturbance can cascade across levels of biological organization through altered interspecific interactions. Cirsium palustre retains flexibility to bias reproduction towards selfing where pollen donor diversity is limited; such reproductive flexibility may be an important mechanism structuring plant populations in human-modified landscapes

    Insect pollinators: linking research and policy. Workshop report.

    Get PDF
    EXECUTIVE SUMMARY Pollinators interact with plants to underpin wider biodiversity, ecosystem function, ecosystem services to agricultural crops and ultimately human nutrition. The conservation of pollinators is thus an important goal. Pollinators and pollination represent a tractable example of how biodiversity can be linked to an ecosystem service. This represents a case study for exploring the impacts of various policy instruments aiming to halt/reverse the loss of ecosystem services. There is a need to understand how multiple pressures (e.g. habitat loss, fragmentation and degradation, climate change, pests and diseases, invasive species and environmental chemicals) can combine or interact to affect diversity, abundance and health of different pollinator groups. Decision makers need to balance consideration of the effects of single pressures on pollinators against the suite of other pressures on pollinators. For instance, the threat from pesticide use (with its high public and media profile) also needs to be considered in the context of the other threats facing pollinators and balanced against the need for food security. An independent review of the balance of risks across pollinator groups from pesticide use would help synthesise current knowledge into an accessible form for decision makers. To manage or lessen these threats to pollinators (wild and managed) and pollination requires improved knowledge about their basic ecology. We still need to know where and in what numbers different pollinator species occur, how they use different environments, how they interact with each other through shared plants and diseases and how wild pollinator abundance is changing. Decision makers need clear factual evidence for i) the relative contribution of different managed and wild pollinator groups to wildflower and crop pollination and ii) how this varies across different land-uses, ecosystems and regions. Addressing these basic and applied questions will improve our ability to forecast impacts on pollination service delivery to agricultural crops arising from current and future environmental changes, pesticide use and emerging diseases. The development of a long-term, multi-scale monitoring scheme to monitor trends in pollinator (wild and managed) population size and delivery of pollination services (ideally tied to data collection on land-use, pesticide applications and disease incidence at relevant spatial scales) would provide the evidence base for developing the effectiveness of policy and management interventions over time. Such a monitoring scheme would benefit from including research council organisations (e.g. CEH), governmental departments (e.g. Fera), universities, museums and NGOs (e.g. BBKA,SBA, Bumblebee Conservation Trust etc) Insect Pollinators: linking research and policy Workshop Report | 5 In the context of agricultural intensification and conservation we need to establish what type, quality and quantity of interventions (e.g. agri-environment schemes, protected areas) are needed, where to place them and how they can sustain different pollinator populations and effective pollination services. Current monitoring of the risks from diseases and pesticides requires broadening to consider other insects aside from honey bees, unless we can demonstrate that honey bees are good surrogates for all other pollinators. There is a need to increase confidence in regulatory risk assessments pertaining to pathogens and pesticides by incorporating other pollinator species, investigating chronic exposure to multiple chemicals and using field relevant dosages (specific to regions, not using other data sources as surrogates). At present the effects of spatial, social and temporal scales on the benefits stakeholders receive from pollination services are only beginning to be understood. Economic valuation of pollination services can help optimise the cost-effectiveness of service management measures and offer new opportunities to incentivise action or raise awareness among stakeholders. Novel tools and instruments (e.g. education and training) are needed to translate broad international (e.g. CBD, EU Biodiversity Strategy) and national (e.g. England‟s Biodiversity Strategy) policies into local actor (e.g. beekeeper, farmer, citizen scientist) contributions to meet biodiversity commitments Refocusing some public funding to link basic science to development of practical solutions (e.g. better crop protection products, improved disease resistance or treatment) could help science deliver better-targeted evidence for pollinator protection. Scientists need to make more use of opportunities (e.g. POSTnotes1; practitioner guides) to transfer knowledge to a broad audience in order to better influence decision maker and practitioner behaviours. Improved knowledge exchange between scientists and decision makers is important to combating threats to pollination. Central to this is improved understanding of the respective positions of policy makers and scientists. For instance, policy-makers usually need to be presented with a range of options to balance against other areas of policy. Science does not always arrive at a consensus due to uncertainties in data or models. Policy-makers need to understand that scientists are communicating the “best available knowledge at present” and that consequently it is not always possible to give a definitive answer
    corecore