171 research outputs found

    PreciseBugCollector: Extensible, Executable and Precise Bug-fix Collection

    Full text link
    Bug datasets are vital for enabling deep learning techniques to address software maintenance tasks related to bugs. However, existing bug datasets suffer from precise and scale limitations: they are either small-scale but precise with manual validation or large-scale but imprecise with simple commit message processing. In this paper, we introduce PreciseBugCollector, a precise, multi-language bug collection approach that overcomes these two limitations. PreciseBugCollector is based on two novel components: a) A bug tracker to map the codebase repositories with external bug repositories to trace bug type information, and b) A bug injector to generate project-specific bugs by injecting noise into the correct codebases and then executing them against their test suites to obtain test failure messages. We implement PreciseBugCollector against three sources: 1) A bug tracker that links to the national vulnerability data set (NVD) to collect general-wise vulnerabilities, 2) A bug tracker that links to OSS-Fuzz to collect general-wise bugs, and 3) A bug injector based on 16 injection rules to generate project-wise bugs. To date, PreciseBugCollector comprises 1057818 bugs extracted from 2968 open-source projects. Of these, 12602 bugs are sourced from bug repositories (NVD and OSS-Fuzz), while the remaining 1045216 project-specific bugs are generated by the bug injector. Considering the challenge objectives, we argue that a bug injection approach is highly valuable for the industrial setting, since project-specific bugs align with domain knowledge, share the same codebase, and adhere to the coding style employed in industrial projects.Comment: Accepted at the industry challenge track of ASE 202

    Synthetic Datasets for Autonomous Driving: A Survey

    Full text link
    Autonomous driving techniques have been flourishing in recent years while thirsting for huge amounts of high-quality data. However, it is difficult for real-world datasets to keep up with the pace of changing requirements due to their expensive and time-consuming experimental and labeling costs. Therefore, more and more researchers are turning to synthetic datasets to easily generate rich and changeable data as an effective complement to the real world and to improve the performance of algorithms. In this paper, we summarize the evolution of synthetic dataset generation methods and review the work to date in synthetic datasets related to single and multi-task categories for to autonomous driving study. We also discuss the role that synthetic dataset plays the evaluation, gap test, and positive effect in autonomous driving related algorithm testing, especially on trustworthiness and safety aspects. Finally, we discuss general trends and possible development directions. To the best of our knowledge, this is the first survey focusing on the application of synthetic datasets in autonomous driving. This survey also raises awareness of the problems of real-world deployment of autonomous driving technology and provides researchers with a possible solution.Comment: 19 pages, 5 figure

    Experimental and Field Investigations on the Impact-Resistance Mechanical Properties of Negative Poisson’s Ratio Bolt/Cable

    Get PDF
    AbstractDynamic impact tests of negative Poisson’s ratio (NPR) and rebar bolts under different impact wavelengths were carried out using a self-developed NPR bolt tensile impact test system. Additionally, a field anti-impact test using blasting was performed to simulate rockburst, and the field anti-impact characteristics of the NPR and conventional cable were compared and analysed. The experimental test results revealed that the peak impact force of the NPR and rebar bolts was inversely proportional to the wavelength. The NPR bolt underwent only constant resistance structural deformation, and the rod body did not break. The rebar bolt body fractured and necked. Under the same impact wavelength, the impact force and elongation of the two bolt types were proportional to the impact velocity. Compared with the greater peak impact force of the rebar bolt, the NPR bolt output structure deformation reduced the peak impact force. At the same impact velocity, as the wavelength increased, the impact force of the NPR bolt decreased rapidly, and the number of peaks also decreased. The impact force peak value of the rebar bolt was high, the impact force-time curve had multipeak characteristics, and no apparent rapid attenuation occurred. The field test results indicated that the NPR cable could produce slip deformation under the action of an explosion impact force to absorb the impact energy and that it had special mechanical properties to maintain a constant resistance. Under the same equivalent blasting impact energy, the conventional cable test section collapsed completely. The NPR cable test section was stable overall, verifying that the NPR cable had better impact-resistance mechanical properties than conventional cable. The research results provide a reliable basis for the effectiveness of NPR bolts/cables in preventing rockbursts

    Viral neutralization by antibody-imposed physical disruption

    Get PDF
    中和抗体是机体抵御病毒入侵的一类免疫球蛋白,也是疫苗发挥作用的主要效应分子。目前已知的中和抗体作用机制,主要包括阻断病毒-细胞相互作用和介导免疫调理作用。最近我校夏宁邵教授团队研究结果揭示了一种由抗体诱导病毒原位崩解的中和新机制。该研究首次揭示了抗体的直接物理碰撞中和机制,并提出诱导这类中和抗体的方法,有助于病毒保护性抗体和疫苗设计,适用于多种病原体,而不仅限于戊型肝炎病毒。分子疫苗学和分子诊断学国家重点实验室夏宁邵教授、李少伟教授和顾颖副教授为该论文的共同通讯作者,郑清炳博士、硕士生蒋婕、博士生何茂洲和郑子峥副教授为共同第一作者。In adaptive immunity, organisms produce neutralizing antibodies (nAbs) to eliminate invading pathogens. Here, we explored whether viral neutralization could be attained through the physical disruption of a virus upon nAb binding. We report the neutralization mechanism of a potent nAb 8C11 against the hepatitis E virus (HEV), a nonenveloped positive-sense single-stranded RNA virus associated with abundant acute hepatitis. The 8C11 binding flanks the protrusion spike of the HEV viruslike particles (VLPs) and leads to tremendous physical collision between the antibody and the capsid, dissociating the VLPs into homodimer species within 2 h. Cryo-electron microscopy reconstruction of the dissociation intermediates at an earlier (15-min) stage revealed smeared protrusion spikes and a loss of icosahedral symmetry with the capsid core remaining unchanged. This structural disruption leads to the presence of only a few native HEV virions in the ultracentrifugation pellet and exposes the viral genome. Conceptually, we propose a strategy to raise collision-inducing nAbs against single spike moieties that feature in the context of the entire pathogen at positions where the neighboring space cannot afford to accommodate an antibody. This rationale may facilitate unique vaccine development and antimicrobial antibody design.This research was supported by grants from the Natural Science Foundation of Fujian Province (Grant 2017J07005), the National Science and Technology Major Project of Infectious Diseases (Grant 2018ZX10101001-002), and the National Natural Science Foundation of China (Grants 81871247, 81991490, and 81571996).国家自然科学基金重大项目、海峡联合项目和面上项目、福建省自然科学杰出青年基金、国家传染病科技重大专项等资助了该项研究

    Search for the standard model Higgs boson at LEP

    Get PDF

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the flavour composition of dijet events in pp collisions at root s=7 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the flavour composition of dijet events produced in pp collisions at &#8730;s=7 TeV using the ATLAS detector. The measurement uses the full 2010 data sample, corresponding to an integrated luminosity of 39 pb−1. Six possible combinations of light, charm and bottom jets are identified in the dijet events, where the jet flavour is defined by the presence of bottom, charm or solely light flavour hadrons in the jet. Kinematic variables, based on the properties of displaced decay vertices and optimised for jet flavour identification, are used in a multidimensional template fit to measure the fractions of these dijet flavour states as functions of the leading jet transverse momentum in the range 40 GeV to 500 GeV and jet rapidity |y|&#60;2.1. The fit results agree with the predictions of leading- and next-to-leading-order calculations, with the exception of the dijet fraction composed of bottom and light flavour jets, which is underestimated by all models at large transverse jet momenta. The ability to identify jets containing two b-hadrons, originating from e.g. gluon splitting, is demonstrated. The difference between bottom jet production rates in leading and subleading jets is consistent with the next-to-leading-order predictions

    Viral neutralization by antibody-imposed physical disruption.

    Get PDF
    In adaptive immunity, organisms produce neutralizing antibodies (nAbs) to eliminate invading pathogens. Here, we explored whether viral neutralization could be attained through the physical disruption of a virus upon nAb binding. We report the neutralization mechanism of a potent nAb 8C11 against the hepatitis E virus (HEV), a nonenveloped positive-sense single-stranded RNA virus associated with abundant acute hepatitis. The 8C11 binding flanks the protrusion spike of the HEV viruslike particles (VLPs) and leads to tremendous physical collision between the antibody and the capsid, dissociating the VLPs into homodimer species within 2 h. Cryo-electron microscopy reconstruction of the dissociation intermediates at an earlier (15-min) stage revealed smeared protrusion spikes and a loss of icosahedral symmetry with the capsid core remaining unchanged. This structural disruption leads to the presence of only a few native HEV virions in the ultracentrifugation pellet and exposes the viral genome. Conceptually, we propose a strategy to raise collision-inducing nAbs against single spike moieties that feature in the context of the entire pathogen at positions where the neighboring space cannot afford to accommodate an antibody. This rationale may facilitate unique vaccine development and antimicrobial antibody design
    corecore