109 research outputs found

    Correlation Between Volcanic and Tectonic Segmentation of Fast-Spreading Ridges: Evidence from Volcanic Structures and Lava Flow Morphology on the East Pacific Rise at 9˚-10˚N

    Get PDF
    Combined analyses of volcanic features in DSL-120 sonar data and Argo I images along the ridge crest of the East Pacific Rise, 9_090–540N reveal a consistent decrease in inferred lava effusion rate toward the ends of third-order segments. The correlation of tectonic segmentation and volcanic style suggests that third-order segmentation corresponds to the volcanic segmentation of the ridge. Along-axis changes in volcanic structures (from collapse troughs to basaltic lava domes) and lava morphology (from sheet to pillow flows) coincide with the boundaries of morphologically defined third order tectonic segments of the ridge crest visible in shipboard multibeam bathymetry. Pillow lava flows cover 25% of the surveyed area of the ridge crest and are closely associated with small lava domes that occur primarily at third-order segment ends. An additional 25% of the surveyed area of the ridge crest is covered by sheet lava flows found in close association with an axial collapse trough. The remaining terrain consists of lobate lava flows. We interpret the spatial correlations of morphologic, structural, seismic, and petrologic data as evidence that individual volcanic plumbing systems are organized at _20 km spacing along the ridge axis (third-order segment scale) in agreement with the hypothesis that volcanic and tectonic segmentations are correlated. For fast spreading ridges, we estimate that the longevity of volcanic segments is _104–105 years, 1–3 orders of magnitude longer than fourth-order segments (_102–103 years). This implies the present pattern of hydrothermal activity may reorganize tens or hundreds of times while volcanic segmentation remains fairly stable

    Permeability-porosity relationships in seafloor vent deposits : dependence on pore evolution processes

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B05208, doi:10.1029/2006JB004716.Systematic laboratory measurements of permeability and porosity were conducted on three large vent structures from the Mothra Hydrothermal vent field on the Endeavor segment of the Juan de Fuca Ridge. Geometric means of permeability values obtained from a probe permeameter are 5.9 × 10−15 m2 for Phang, a tall sulfide-dominated spire that was not actively venting when sampled; 1.4 × 10−14 m2 for Roane, a lower-temperature spire with dense macrofaunal communities growing on its sides that was venting diffuse fluid of <300°C; and 1.6 × 10−14 m2 for Finn, an active black smoker with a well-defined inner conduit that was venting 302°C fluids prior to recovery. Twenty-three cylindrical cores were then taken from these vent structures. Permeability and porosity of the drill cores were determined on the basis of Darcy's law and Boyle's law, respectively. Permeability values range from ∼10−15 to 10−13 m2 for core samples from Phang, from ∼10−15 to 10−12 m2 for cores from Roane, and from ∼10−15 to 3 × 10−13 m2 for cores from Finn, in good agreement with the probe permeability measurements. Permeability and porosity relationships are best described by two different power law relationships with exponents of ∼9 (group I) and ∼3 (group II). Microstructural analyses reveal that the difference in the two permeability-porosity relationships reflects different mineral precipitation processes as pore space evolves within different parts of the vent structures, either with angular sulfide grains depositing as aggregates that block fluid paths very efficiently (group I), or by late stage amorphous silica that coats existing grains and reduces fluid paths more gradually (group II). The results suggest that quantification of permeability and porosity relationships leads to a better understanding of pore evolution processes. Correctly identifying permeability and porosity relationships is an important first step toward accurately estimating fluid distribution, flow rate, and environmental conditions within seafloor vent deposits, which has important consequences for chimney growth and biological communities that reside within and on vent structures.Support from the National Science Foundation under grants NSF OCE-9986456 (W.Z. and M.K.T.) and NSF OCE-0327488 (P.R.C.) is gratefully acknowledged. We also thank the WHOI summer student fellowship for providing support to H.G

    Interplay between faults and lava flows in construction of the upper oceanic crust : the East Pacific Rise crest 9°25′–9°58′N

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06005, doi:10.1029/2006GC001399.The distribution of faults and fault characteristics along the East Pacific Rise (EPR) crest between 9°25′N and 9°58′N were studied using high-resolution side-scan sonar data and near-bottom bathymetric profiles. The resulting analysis shows important variations in the density of deformational features and tectonic strain estimates at young seafloor relative to older, sediment-covered seafloor of the same spreading age. We estimate that the expression of tectonic deformation and associated strain on “old” seafloor is ~5 times greater than that on “young” seafloor, owing to the frequent fault burial by recent lava flows. Thus the unseen, volcanically overprinted tectonic deformation may contribute from 30% to 100% of the ~300 m of subsidence required to fully build up the extrusive pile (Layer 2A). Many longer lava flows (greater than ~1 km) dam against inward facing fault scarps. This limits their length at distances of 1–2 km, which are coincident with where the extrusive layer acquires its full thickness. More than 2% of plate separation at the EPR is accommodated by brittle deformation, which consists mainly of inward facing faults (~70%). Faulting at the EPR crest occurs within the narrow, ~4 km wide upper crust that behaves as a brittle lid overlying the axial magma chamber. Deformation at greater distances off axis (up to 40 km) is accommodated by flexure of the lithosphere due to thermal subsidence, resulting in ~50% inward facing faults accommodating ~50% of the strain. On the basis of observed burial of faults by lava flows and damming of flows by fault scarps, we find that the development of Layer 2A is strongly controlled by low-relief growth faults that form at the ridge crest and its upper flanks. In turn, those faults have a profound impact on how lava flows are distributed along and across the ridge crest.The field and laboratory studies were supported by NSF grants OCE-9819261 (to H.S., M.A.T., and D.J.F.), OCE-0525863 (D.J.F. and S.A.S.), OCE-0138088 (M.P.), WHOI Vetlesen Foundation Funds (J.E., D.J.F., and S.A.S.). Additional support by INSU/CNRS to J.E. is also acknowledged

    Biomarkers Signal Contaminant Effects on the Organs of English Sole (Parophrys vetulus) from Puget Sound

    Get PDF
    Fish living in contaminated environments accumulate toxic chemicals in their tissues. Biomarkers are needed to identify the resulting health effects, particularly focusing on early changes at a subcellular level. We used a suite of complementary biomarkers to signal contaminant-induced changes in the DNA structure and cellular physiology of the livers and gills of English sole (Parophrys vetulus). These sediment-dwelling fish were obtained from the industrialized lower Duwamish River (DR) in Seattle, Washington, and from Quartermaster Harbor (QMH), a relatively clean reference site in south Puget Sound. Fourier transform–infrared (FT-IR) spectroscopy, liquid chromatography/mass spectrometry (LC/MS), and gas chromatography/mass spectrometry (GC/MS) identified potentially deleterious alterations in the DNA structure of the DR fish livers and gills, compared with the QMH fish. Expression of CYP1A (a member of the cytochrome P450 multigene family of enzymes) signaled changes in the liver associated with the oxidation of organic xenobiotics, as previously found with the gill. The FT-IR models demonstrated that the liver DNA of the DR fish had a unique structure likely arising from exposure to environmental chemicals. Analysis by LC/MS and GC/MS showed higher concentrations of DNA base lesions in the liver DNA of the DR fish, suggesting that these base modifications contributed to this discrete DNA structure. A comparable analysis by LC/MS and GC/MS of base modifications provided similar results with the gill. The biomarkers described are highly promising for identifying contaminant-induced stresses in fish populations from polluted and reference sites and, in addition, for monitoring the progress of remedial actions

    Seismic tremor at the 9°50′N East Pacific Rise eruption site

    Get PDF
    Ocean bottom seismic observations within the 9°50′N region of the East Pacific Rise indicate persistent, low-amplitude tremor activity throughout the October 2003 through February 2007 period of monitoring. These signals exhibit either monochromatic or polychromatic spectral characteristics, with a ∼6 Hz fundamental frequency and up to two harmonics. Individual events cannot be correlated between nearby (<1 km) stations, implying the presence of multiple, small-amplitude sources positioned within the shallow crust. Tremor exhibits a semidiurnal periodicity, with some stations recording activity during times of increasing tidal extension and others detecting tremor signals during times of increasing compression. The amplitude, duration, and rate of activity also correlate positively with fortnightly changes in the amplitude of the tides. These spatiotemporal patterns are consistent with tremor generation in response to tidally modulated fluid flow within a network of shallow cracks. Tremor energy flux is spatially and temporally heterogeneous; however, there are extended periods of greater and lesser activity that can be tracked across portions of the array. Despite their shallow crustal origin, changes in tremor amplitude and spectral character occur in the months prior to a major microearthquake swarm and inferred seafloor spreading event on 22 January 2006, with an increase in the degree of correlation between tremor activity and tidal strain in the weeks leading up to this event. After the spreading event, two eruption-surviving stations near the axis continue to show high rates of tremor activity, whereas these signals are suppressed at the single station recovered from the near-axis flanks. This off-axis quiescence may result from the dike-induced closing of cracks or perhaps from the emplacement of impermeable flows near the station

    Channelized lava flows at the East Pacific Rise crest 9°–10°N : the importance of off-axis lava transport in developing the architecture of young oceanic crust

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q08005, doi:10.1029/2005GC000912.Submarine lava flows are the building blocks of young oceanic crust. Lava erupted at the ridge axis is transported across the ridge crest in a manner dictated by the rheology of the lava, the characteristics of the eruption, and the topography it encounters. The resulting lava flows can vary dramatically in form and consequently in their impact on the physical characteristics of the seafloor and the architecture of the upper 50–500 m of the oceanic crust. We have mapped and measured numerous submarine channelized lava flows at the East Pacific Rise (EPR) crest 9°–10°N that reflect the high-effusion-rate and high-flow-velocity end-member of lava eruption and transport at mid-ocean ridges. Channel systems composed of identifiable segments 50–1000 m in length extend up to 3 km from the axial summit trough (AST) and have widths of 10–50 m and depths of 2–3 m. Samples collected within the channels are N-MORB with Mg# indicating eruption from the AST. We produce detailed maps of lava surface morphology across the channel surface from mosaics of digital images that show lineated or flat sheets at the channel center bounded by brecciated lava at the channel margins. Modeled velocity profiles across the channel surface allow us to determine flux through the channels from 0.4 to 4.7 × 103 m3/s, and modeled shear rates help explain the surface morphology variation. We suggest that channelized lava flows are a primary mechanism by which lava accumulates in the off-axis region (1–3 km) and produces the layer 2A thickening that is observed at fast and superfast spreading ridges. In addition, the rapid, high-volume-flux eruptions necessary to produce channelized flows may act as an indicator of the local magma budget along the EPR. We find that high concentrations of channelized lava flows correlate with local, across-axis ridge morphology indicative of an elevated magma budget. Additionally, in locations where channelized flows are located dominantly to the east or west of the AST, the ridge crest is asymmetric, and layer 2A appears to thicken over a greater distance from the AST toward the side of the ridge crest where the channels are located.This work was supported by NSF grant OCE-9819261 (to H.S., M.A.T., and D.J.F.) as well as the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Penzance Endowed Discretionary Fund

    Constructing the crust along the Galapagos Spreading Center 91.3°–95.5°W : correlation of seismic layer 2A with axial magma lens and topographic characteristics

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 109 (2004): B10310, doi:10.1029/2004JB003066.Multichannel seismic reflection data are used to infer crustal accretion processes along the intermediate spreading Galapagos Spreading Center. East of 92.5°W, we image a magma lens beneath the ridge axis that is relatively shallow (1.0–2.5 km below the seafloor) and narrow (∼0.5–1.5 km, cross-axis width). We also image a thin seismic layer 2A (0.24–0.42 km) that thickens away from the ridge axis by as much as 150%. West of 92.7°W, the magma lens is deeper (2.5–4.5 km) and wider (0.7–2.4 km), and layer 2A is thicker (0.36–0.66 km) and thickens off axis by <40%. The positive correlation between layer 2A thickness and magma lens depth supports the interpretation of layer 2A as the extrusive volcanic layer with thickness controlled by the pressure on the magma lens and its ability to push magma to the surface. Our findings also suggest that narrower magma lenses focus diking close the ridge axis such that lava flowing away from the ridge axis will blanket older flows and thicken the extrusive crust off axis. Flow of lava away from the ridge axis is probably promoted by the slope of the axial bathymetric high, which is largest east of 92.5°W. West of ∼94°W the “transitional” axial morphology lacks a prominent bathymetric high and layer 2A no longer thickens off axis. We detect no magma lens west of 94.7°W where a small axial valley appears. The above changes can be linked to the westward decrease in the magma and heat flux associated with the fading influence of the Galapagos hot spot on the Galapagos Spreading Center.This project was funded by NSF-OCE- 0002189

    The Southeast Indian Ridge between 88°E and 118°E: Variations in crustal accretion at constant spreading rate

    Get PDF
    The temperature of the mantle and the rate of melt production are parameters which play important roles in controlling the style of crustal accretion along mid-ocean ridges. To investigate the variability in crustal accretion that develops in response to variations in mantle temperature, we have conducted a geophysical investigation of the Southeast Indian Ridge (SEIR) between the Amsterdam hotspot and the Australian-Antarctic Discordance (88°E- 118°E). The spreading center deepens by 2100 m from west to east within the study area. Despite a uniform, intermediate spreading rate (69-75 mm yr- 1), the SEIR exhibits the range in axial morphology displayed by the East Pacific Rise and the Mid-Atlantic Ridge (MAR) and usually associated with variations in spreading rate. The spreading center is characterized by an axial high west of 102°45'E, whereas an axial valley is prevalent east of this longitude. Both the deepening of the ridge axis and the general evolution of axial morphology from an axial high to a rift valley are not uniform. A region of intermediate morphology separates axial highs and MAR-like rift valleys. Local transitions in axial morphology occur in three areas along the ridge axis. The increase in axial depth toward the Australian-Antarctic Discordance may be explained by the thinning of the oceanic crust by ~ 4 km and the change in axial topography. The long-wavelength changes observed along the SEIR can be attributed to a gradient in mantle temperature between regions influenced by the Amsterdam and Kerguelen hot spots and the Australian-Antarctic Discordance. However, local processes, perhaps associated with an heterogeneous mantle or along-axis asthenospheric flow, may give rise to local transitions in axial topography and depth anomalies

    Seismic structure of the Endeavour Segment, Juan de Fuca Ridge : correlations with seismicity and hydrothermal activity

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B02401, doi:10.1029/2005JB004210.Multichannel seismic reflection data collected in July 2002 at the Endeavour Segment, Juan de Fuca Ridge, show a midcrustal reflector underlying all of the known high-temperature hydrothermal vent fields in this area. On the basis of the character and geometry of this reflection, its similarity to events at other spreading centers, and its polarity, we identify this as a reflection from one or more crustal magma bodies rather than from a hydrothermal cracking front interface. The Endeavour magma chamber reflector is found under the central, topographically shallow section of the segment at two-way traveltime (TWTT) values of 0.9–1.4 s (∼2.1–3.3 km) below the seafloor. It extends approximately 24 km along axis and is shallowest beneath the center of the segment and deepens toward the segment ends. On cross-axis lines the axial magma chamber (AMC) reflector is only 0.4–1.2 km wide and appears to dip 8–36° to the east. While a magma chamber underlies all known Endeavour high-temperature hydrothermal vent fields, AMC depth is not a dominant factor in determining vent fluid properties. The stacked and migrated seismic lines also show a strong layer 2a event at TWTT values of 0.30 ± 0.09 s (380 ± 120 m) below the seafloor on the along-axis line and 0.38 ± 0.09 s (500 ± 110 m) on the cross-axis lines. A weak Moho reflection is observed in a few locations at TWTT values of 1.9–2.4 s below the seafloor. By projecting hypocenters of well-located microseismicity in this region onto the seismic sections, we find that most axial earthquakes are concentrated just above the magma chamber and distributed diffusely within this zone, indicating thermal-related cracking. The presence of a partially molten crustal magma chamber argues against prior hypotheses that hydrothermal heat extraction at this intermediate spreading ridge is primarily driven by propagation of a cracking front down into a frozen magma chamber and indicates that magmatic heat plays a significant role in the hydrothermal system. Morphological and hydrothermal differences between the intermediate spreading Endeavour and fast spreading ridges are attributable to the greater depth of the Endeavour AMC and the corresponding possibility of axial faulting.E.V.A. was supported by a National Science Foundation Graduate Research Fellowship, the WHOI-MIT Joint Program, and the WHOI Deep Ocean Exploration Institute. This work was also supported by OCE-0002551 to the Woods Hole Oceanographic Institution, OCE-0002488 to Lamont-Doherty Earth Observatory, and OCE-0002600 to Scripps Institution of Oceanography
    corecore