258 research outputs found
Naturally driven variability in the global secondary organic aerosol over a decade
International audienceIn order to investigate the variability of the secondary organic aerosol (SOA) distributions and budget and provide a measure for the robustness of the conclusions on human induced changes of SOA, a global 3-dimensional chemistry transport model describing both the gas and the particulate phase chemistry of the troposphere has been applied. The response of the global budget of SOA to temperature and moisture changes as well as to biogenic emission changes over a decade (1984-1993) has been evaluated. The considered emissions of biogenic non-methane volatile organic compounds (VOC) are driven by temperature, light and vegetation. They vary between 756 and 810 Tg Cy-1 and are therefore about 5.5 times higher than the anthropogenic VOC emissions. All secondary aerosols (sulphuric, nitrates and organics) are computed on-line together with the aerosol associated water. Over the studied decade, the computed natural variations (8%) in the chemical SOA production from biogenic VOC oxidation equal the chemical SOA production from anthropogenic VOC oxidation. Maximum values are calculated for 1990 (warmer and drier) and minimum values for 1986 (colder and wetter). The SOA computed variability results from a 7% increase in biogenic VOC emissions from 1986 to 1990 combined with 8.5% and 6% increases in the wet and dry deposition of SOA and leads to about 11.5% increase in the SOA burden of biogenic origin. The present study also demonstrates the importance of the hydrological cycle in determining the built up and fate of SOA in the atmosphere. It also reveals the existence of significant positive and negative feedback mechanisms in the atmosphere responsible for the non linear relationship between emissions of biogenic VOC and SOA burden
Interactive chemistry in the Laboratoire de Météorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry
We present a description and evaluation of LMDz-INCA, a global three-dimensional chemistry-climate model, pertaining to its recently developed NMHC version. In this substantially extended version of the model a comprehensive representation of the photochemistry of non-methane hydrocarbons (NMHC) and volatile organic compounds (VOC) from biogenic, anthropogenic, and biomass-burning sources has been included. The tropospheric annual mean methane (9.2 years) and methylchloroform (5.5 years) chemical lifetimes are well within the range of previous modelling studies and are in excellent agreement with estimates established by means of global observations. The model provides a reasonable simulation of the horizontal and vertical distribution and seasonal cycle of CO and key non-methane VOC, such as acetone, methanol, and formaldehyde as compared to observational data from several ground stations and aircraft campaigns. LMDz-INCA in the NMHC version reproduces tropospheric ozone concentrations fairly well throughout most of the troposphere. The model is applied in several sensitivity studies of the biosphere-atmosphere photochemical feedback. The impact of surface emissions of isoprene, acetone, and methanol is studied. These experiments show a substantial impact of isoprene on tropospheric ozone and carbon monoxide concentrations revealing an increase in surface O<sub>3</sub> and CO levels of up to 30 ppbv and 60 ppbv, respectively. Isoprene also appears to significantly impact the global OH distribution resulting in a decrease of the global mean tropospheric OH concentration by approximately 0.7×10<sup>5</sup> molecules cm<sup>-3</sup> or roughly 8% and an increase in the global mean tropospheric methane lifetime by approximately seven months. A global mean ozone net radiative forcing due to the isoprene induced increase in the tropospheric ozone burden of 0.09 W m<sup>-2</sup> is found. The key role of isoprene photooxidation in the global tropospheric redistribution of NO<sub>x</sub> is demonstrated. LMDz-INCA calculates an increase of PAN surface mixing ratios ranging from 75 to 750 pptv and 10 to 250 pptv during northern hemispheric summer and winter, respectively. Acetone and methanol are found to play a significant role in the upper troposphere/lower stratosphere (UT/LS) budget of peroxy radicals. Calculations with LMDz-INCA show an increase in HO<sub>x</sub> concentrations region of 8 to 15% and 10 to 15% due to methanol and acetone biogenic surface emissions, respectively. The model has been used to estimate the global tropospheric CO budget. A global CO source of 3019 Tg CO yr<sup>-1</sup> is estimated. This source divides into a primary source of 1533 Tg CO yr<sup>-1</sup> and secondary source of 1489 Tg CO yr<sup>-1</sup> deriving from VOC photooxidation. Global VOC-to-CO conversion efficiencies of 90% for methane and between 20 and 45% for individual VOC are calculated by LMDz-INCA
Power-Based Droop Control in DC Microgrids Enabling Seamless Disconnection From Upstream Grids
This paper proposes a local power-based droop controller for distributed energy resource converters in dc microgrids that are connected to upstream grids by grid-interface converters. During normal operation, the grid-interface converter imposes the microgrid bus voltage, and the proposed controller allows power flow regulation at distributed energy resource converters\u2019 output. On the other hand, during abnormal operation of the grid-interface converter (e.g., due to faults in the upstream grid), the proposed controller allows bus voltage regulation by droop control. Notably, the controller can autonomously convert from power flow control to droop control, without any need of bus voltage variation detection schemes or communication with other microgrid components, which enables seamless transitions between these two modes of operation. Considering distributed energy resource converters employing the power-based droop control, the operation modes of a single converter and of the whole microgrid are defined and investigated herein. The controller design is also introduced. Furthermore, the power sharing performance of this control approach is analyzed and compared with that of classical droop control. The experimental results from a laboratory-scale dc microgrid prototype are reported to show the final performances of the proposed power-based droop control
Sources, transport and deposition of iron in the global atmosphere
International audienceAtmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and the subsequent deposition to the oceans have been accounted for in only few ocean biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960â2007 were estimated to be 5.3 Tg yrâ1 (90% confidence of 2.3 to 12.1). Of these emissions, 1, 27 and 72% were emitted in particles 10 ÎŒm (PM> 10), respectively, compared to a total Fe emission from mineral dust of 41.0 Tg yrâ1 in a log-normal distribution with a mass median diameter of 2.5 ÎŒm and a geometric standard deviation of 2. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 since 2000 due to an increase in Fe emission from motor vehicles (from 0.008 to 0.0103 Tg yrâ1 in 2000 and 2007, respectively). These emissions have been introduced in a global 3-D transport model run at a spatial resolution of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations as monthly means were compared with the monthly (57 sites) or daily (768 sites) measured concentrations at a total of 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the surface was within a factor of 2 at most sampling stations, and the deviation was within a factor of 1.5 at sampling stations dominated by combustion sources. We analysed the relative contribution of combustion sources to total Fe concentrations over different regions of the world. The new mineralogical database led to a modest improvement in the simulation relative to station data even in dust-dominated regions, but could provide useful information on the chemical forms of Fe in dust for coupling with ocean biota models. We estimated a total Fe deposition sink of 8.4 Tg yrâ1 over global oceans, 7% of which originated from the combustion sources. Our central estimates of Fe emissions from fossil fuel combustion (mainly from coal) are generally higher than those in previous studies, although they are within the uncertainty range of our estimates. In particular, the higher than previously estimated Fe emission from coal combustion implies a larger atmospheric anthropogenic input of soluble Fe to the northern Atlantic and northern Pacific Oceans, which is expected to enhance the biological carbon pump in those regions
Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030
The global impact of shipping on atmospheric chemistry and radiative forcing, as well as the associated uncertainties, have been quantified using an ensemble of ten state-of-the-art atmospheric chemistry models and a predefined set of emission data. The analysis is performed for present-day conditions ( year 2000) and for two future ship emission scenarios. In one scenario ship emissions stabilize at 2000 levels; in the other ship emissions increase with a constant annual growth rate of 2.2% up to 2030 ( termed the "Constant Growth Scenario" (CGS)). Most other anthropogenic emissions follow the IPCC ( Intergovernmental Panel on Climate Change) SRES ( Special Report on Emission Scenarios) A2 scenario, while biomass burning and natural emissions remain at year 2000 levels. An intercomparison of the model results with observations over the Northern Hemisphere (25 degrees - 60 degrees N) oceanic regions in the lower troposphere showed that the models are capable to reproduce ozone (O-3) and nitrogen oxides (NOx= NO+ NO2) reasonably well, whereas sulphur dioxide (SO2) in the marine boundary layer is significantly underestimated. The most pronounced changes in annual mean tropospheric NO2 and sulphate columns are simulated over the Baltic and North Seas. Other significant changes occur over the North Atlantic, the Gulf of Mexico and along the main shipping lane from Europe to Asia, across the Red and Arabian Seas. Maximum contributions from shipping to annual mean near-surface O-3 are found over the North Atlantic ( 5 - 6 ppbv in 2000; up to 8 ppbv in 2030). Ship contributions to tropospheric O3 columns over the North Atlantic and Indian Oceans reach 1 DU in 2000 and up to 1.8 DU in 2030. Tropospheric O-3 forcings due to shipping are 9.8 +/- 2.0 mW/m(2) in 2000 and 13.6 +/- 2.3 mW/m(2) in 2030. Whilst increasing O-3, ship NOx simultaneously enhances hydroxyl radicals over the remote ocean, reducing the global methane lifetime by 0.13 yr in 2000, and by up to 0.17 yr in 2030, introducing a negative radiative forcing. The models show future increases in NOx and O-3 burden which scale almost linearly with increases in NOx emission totals. Increasing emissions from shipping would significantly counteract the benefits derived from reducing SO2 emissions from all other anthropogenic sources under the A2 scenario over the continents, for example in Europe. Globally, shipping contributes 3% to increases in O-3 burden between 2000 and 2030, and 4.5% to increases in sulphate under A2/CGS. However, if future ground based emissions follow a more stringent scenario, the relative importance of ship emissions will increase. Inter-model differences in the simulated O-3 contributions from ships are significantly smaller than estimated uncertainties stemming from the ship emission inventory, mainly the ship emission totals, the distribution of the emissions over the globe, and the neglect of ship plume dispersion
Radiative forcing in the 21st century due to ozone changes in the troposphere and the lower stratosphere
Radiative forcing due to changes in ozone is expected for the 21st century. An assessment on changes in the tropospheric oxidative state through a model intercomparison ("OxComp'') was conducted for the IPCC Third Assessment Report (IPCC-TAR). OxComp estimated tropospheric changes in ozone and other oxidants during the 21st century based on the "SRES'' A2p emission scenario. In this study we analyze the results of 11 chemical transport models (CTMs) that participated in OxComp and use them as input for detailed radiative forcing calculations. We also address future ozone recovery in the lower stratosphere and its impact on radiative forcing by applying two models that calculate both tropospheric and stratospheric changes. The results of OxComp suggest an increase in global-mean tropospheric ozone between 11.4 and 20.5 DU for the 21st century, representing the model uncertainty range for the A2p scenario. As the A2p scenario constitutes the worst case proposed in IPCC-TAR we consider these results as an upper estimate. The radiative transfer model yields a positive radiative forcing ranging from 0.40 to 0.78 W m(-2) on a global and annual average. The lower stratosphere contributes an additional 7.5-9.3 DU to the calculated increase in the ozone column, increasing radiative forcing by 0.15-0.17 W m(-2). The modeled radiative forcing depends on the height distribution and geographical pattern of predicted ozone changes and shows a distinct seasonal variation. Despite the large variations between the 11 participating models, the calculated range for normalized radiative forcing is within 25%, indicating the ability to scale radiative forcing to global-mean ozone column change
TRADEOFFs in climate effects through aircraft routing: forcing due to radiatively active gases
We have estimated impacts of alternative aviation routings on the radiative forcing. Changes in ozone and OH have been estimated in four Chemistry Transport Models (CTMs) participating in the TRADEOFF project. Radiative forcings due to ozone and methane have been calculated accordingly. In addition radiative forcing due to CO2 is estimated based on fuel consumption. Three alternative routing cases are investigated; one scenario assuming additional polar routes and two scenarios assuming aircraft cruising at higher (+2000 ft) and lower (â6000 ft) altitudes. Results from the base case in year 2000 are included as a reference. Taking first a steady state backward looking approach, adding the changes in the forcing from ozone, CO2 and CH4, the ranges of the models used in this work are â0.8 to â1.8 and 0.3 to 0.6 m Wmâ2 in the lower (â6000 ft) and higher (+2000 ft) cruise levels, respectively. In relative terms, flying 6000ft lower reduces the forcing by 5â10% compared to the current flight pattern, whereas flying higher, while saving fuel and presumably flying time, increases the forcing by about 2â3%. Taking next a forward looking approach we have estimated the integrated forcing (m Wmâ2 yr) over 20 and 100 years time horizons. The relative contributions from each of the three climate gases are somewhat different from the backward looking approach. The differences are moderate adopting 100 year time horizon, whereas under the 20 year horizon CO2 naturally becomes less important relatively. Thus the forcing agents impact climate differently on various time scales. Also, we have found significant differences between the models for ozone and methane. We conclude that we are not yet at a point where we can include non-CO2 effects of aviation in emission trading schemes. Nevertheless, the rerouting cases that have been studied here yield relatively small changes in the radiative forcing due to the radiatively active gases
The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models
We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere
An evaluation of the performance of chemistry transport models by comparison with research aircraft observations. Part 1: Concepts and overall model performance
A rigorous evaluation of five global Chemistry-Transport and two Chemistry-Climate Models operated by several different groups in Europe, was performed. Comparisons were made of the models with trace gas observations from a number of research aircraft measurement campaigns during the four-year period 1995-1998. Whenever possible the models were run over the same four-year period and at each simulation time step the instantaneous tracer fields were interpolated to all coinciding observation points. This approach allows for a very close comparison with observations and fully accounts for the specific meteorological conditions during the measurement flights. This is important considering the often limited availability and representativity of such trace gas measurements. A new extensive database including all major research and commercial aircraft measurements between 1995 and 1998, as well as ozone soundings, was established specifically to support this type of direct comparison. Quantitative methods were applied to judge model performance including the calculation of average concentration biases and the visualization of correlations and RMS errors in the form of so-called Taylor diagrams. We present the general concepts applied, the structure and content of the database, and an overall analysis of model skills over four distinct regions. These regions were selected to represent various atmospheric conditions and to cover large geographical domains such that sufficient observations are available for comparison. The comparison of model results with the observations revealed specific problems for each individual model. This study suggests the further improvements needed and serves as a benchmark for re-evaluations of such improvements. In general all models show deficiencies with respect to both mean concentrations and vertical gradients of important trace gases. These include ozone, CO and NOx at the tropopause. Too strong two-way mixing across the tropopause is suggested to be the main reason for differences between simulated and observed CO and ozone values. The generally poor correlations between simulated and measured NOx values suggest that in particular the NOx input by lightning and the convective transport from the polluted boundary layer are still not well described by current parameterizations, which may lead to significant differences in the spatial and seasonal distribution of NOx in the models. Simulated OH concentrations, on the other hand, were found to be in surprisingly good agreement with measured values
- âŠ