148 research outputs found

    DNA Barcoding the Geometrid Fauna of Bavaria (Lepidoptera): Successes, Surprises, and Questions

    Get PDF
    BACKGROUND: The State of Bavaria is involved in a research program that will lead to the construction of a DNA barcode library for all animal species within its territorial boundaries. The present study provides a comprehensive DNA barcode library for the Geometridae, one of the most diverse of insect families. METHODOLOGY/PRINCIPAL FINDINGS: This study reports DNA barcodes for 400 Bavarian geometrid species, 98 per cent of the known fauna, and approximately one per cent of all Bavarian animal species. Although 98.5% of these species possess diagnostic barcode sequences in Bavaria, records from neighbouring countries suggest that species-level resolution may be compromised in up to 3.5% of cases. All taxa which apparently share barcodes are discussed in detail. One case of modest divergence (1.4%) revealed a species overlooked by the current taxonomic system: Eupithecia goossensiata Mabille, 1869 stat.n. is raised from synonymy with Eupithecia absinthiata (Clerck, 1759) to species rank. Deep intraspecific sequence divergences (>2%) were detected in 20 traditionally recognized species. CONCLUSIONS/SIGNIFICANCE: The study emphasizes the effectiveness of DNA barcoding as a tool for monitoring biodiversity. Open access is provided to a data set that includes records for 1,395 geometrid specimens (331 species) from Bavaria, with 69 additional species from neighbouring regions. Taxa with deep intraspecific sequence divergences are undergoing more detailed analysis to ascertain if they represent cases of cryptic diversity

    Acoelomorpha: earliest branching bilaterians or deuterostomes?

    Get PDF
    The Acoelomorpha is an animal group comprised by nearly 400 species of misleadingly inconspicuous flatworms. Despite this, acoelomorphs have been at the centre of a heated debate about the origin of bilaterian animals for 150 years. The animal tree of life has undergone major changes during the last decades, thanks largely to the advent of molecular data together with the development of more rigorous phylogenetic methods. There is now a relatively robust backbone of the animal tree of life. However, some crucial nodes remain contentious, especially the node defining the root of Bilateria. Some studies situate Acoelomorpha (and Xenoturbellida) as the sister group of all other bilaterians, while other analyses group them within the deuterostomes which instead suggests that the last common bilaterian ancestor directly gave rise to deuterostomes and protostomes. The resolution of this node will have a profound impact on our understanding of animal/bilaterian evolution. In particular, if acoelomorphs are the sister group to Bilateria, it will point to a simple nature for the first bilaterian. Alternatively, if acoelomorphs are deuterostomes, this will imply that they are the result of secondary simplification. Here, we review the state of this question and provide potential ways to solve this long-standing issue. Specifically, we argue for the benefits of (1) obtaining additional genomic data from acoelomorphs, in particular from taxa with slower evolutionary rates; (2) the development of new tools to analyse the data; and (3) the use of metagenomics or metatranscriptomics data. We believe the combination of these three approaches will provide a definitive answer as to the position of the acoelomorphs in the animal tree of life

    Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura

    Get PDF
    Background: Hox genes are critical for patterning the bilaterian anterior-posterior axis. The evolution of their clustered genomic arrangement and ancestral function has been debated since their discovery. As acoels appear to represent the sister group to the remaining Bilateria (Nephrozoa), investigating Hox gene expression will provide an insight into the ancestral features of the Hox genes in metazoan evolution. Results: We describe the expression of anterior, central and posterior class Hox genes and the ParaHox ortholog Cdx in the acoel Convolutriloba longifissura. Expression of all three Hox genes begins contemporaneously after gastrulation and then resolves into staggered domains along the anterior-posterior axis, suggesting that the spatial coordination of Hox gene expression was present in the bilaterian ancestor. After early surface ectodermal expression, the anterior and central class genes are expressed in small domains of putative neural precursor cells co-expressing ClSoxB1, suggesting an evolutionary early function of Hox genes in patterning parts of the nervous system. In contrast, the expression of the posterior Hox gene is found in all three germ layers in a much broader posterior region of the embryo. Conclusion: Our results suggest that the ancestral set of Hox genes was involved in the anteriorposterior patterning of the nervous system of the last common bilaterian ancestor and were later co-opted for patterning in diverse tissues in the bilaterian radiation. The lack of temporal colinearity of Hox expression in acoels may be due to a loss of genomic clustering in this clade or, alternatively, temporal colinearity may have arisen in conjunction with the expansion of the Hox cluster in the Nephrozoa

    Urban coral reefs: Degradation and resilience of hard coral assemblages in coastal cities of East and Southeast Asia

    Get PDF
    © 2018 The Author(s) Given predicted increases in urbanization in tropical and subtropical regions, understanding the processes shaping urban coral reefs may be essential for anticipating future conservation challenges. We used a case study approach to identify unifying patterns of urban coral reefs and clarify the effects of urbanization on hard coral assemblages. Data were compiled from 11 cities throughout East and Southeast Asia, with particular focus on Singapore, Jakarta, Hong Kong, and Naha (Okinawa). Our review highlights several key characteristics of urban coral reefs, including “reef compression” (a decline in bathymetric range with increasing turbidity and decreasing water clarity over time and relative to shore), dominance by domed coral growth forms and low reef complexity, variable city-specific inshore-offshore gradients, early declines in coral cover with recent fluctuating periods of acute impacts and rapid recovery, and colonization of urban infrastructure by hard corals. We present hypotheses for urban reef community dynamics and discuss potential of ecological engineering for corals in urban areas
    corecore