20 research outputs found

    Antimicrobial Activity of some Tropical Fruit Wastes (Guava, Starfruit, Banana, Papaya, Passionfruit, Langsat, Duku, Rambutan and Rambai)

    Get PDF
    Extracts of ripe, unripe and leaves of guava (psidium guajava); ripe, unripe and leaves of starfruit (Averrhoa carambola); ripe and unripe banana (Musa sapientum variety Montel); ripe and unripe papaya (Carica papaya); passionfruit (passiflora edulis F. Flavicarpa) peel; two varieties of Lansium domesticum peel (langsat and duku); rambutan (Nephelium lappaceum) peel and rambai (Baccaurea motleyana) peel were evaluated for antimicrobial activity against gram positive bacteria, gram negative bacteria, yeast and fungi (Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, Lactobacillus bulgaricus; E. coli, Proteus vulgaricus, Pseudomonas aeruginosa, Salmonelli typhi; Saccharomyces cerevisiae, Candida lypolytica; Rhizopus spp., Aspergillus niger, and Chlamydomucor spp). The antimicrobial activities were tested using both the filter paper disc diffusion and tube dilution assays. Extracts from ripe starfruit, guava leaves and rambai peel showed strong activity against all the bacteria tested, in most cases with activity stronger than 50ug streptomycin. Passionfruit peel, ripe and unripe guava showed activity against all the bacteria tested except E. coli. Rambutan peel too showed activity against all the bacteria tested except towards Pseudomonas aeruginosa. Most of the fruit wastes showed some activity towards bacteria but poor activity against yeast or fungi. Extracts from bananas, papayas, passionfruit peel, Lansium domesticum peels and rambutan peels showed activity against Candida lypolytica while extractsfrom guava showed strong activity against Saccharomyces cerevisiae. Other than guava, ripe starfruit, rambai peel and rambutan peel showed potential for use against bacteria

    Application of house of quality in the conceptual design of batik wax extruder and printer

    Get PDF
    Malaysian batik production is dominated by two techniques known as hand-drawn batik or batik tjanting, and stamp batik, or batik block. In comparison to batik block, the more popular batik tjanting takes a longer time to produce. A Standardized Nordic Questionnaire (SNQ) for musculoskeletal symptom examination involving batik artisans in Kelantan and Terengganu identified high rates of musculoskeletal disorders in respondents due to their working posture during the batik tjanting process. It was also observed that the number of workers and artisans willing to participate in the traditional batik industry is on the decline. These problems have led to a systematic Quality Functional Deployment approach to facilitate the decision-making process for the conceptual design of an automatic batik printer. In this study, house of quality (HOQ) was applied to identify the critical features for a batik printer based on the voice of the customer (VOC). A survey was done to rate the importance of VOC using an 8-point Likert scale revealed that the batik practitioners topmost priority for the batik printer feature is the 'ability to adjust and maintain the temperature of wax' (17.54%) while the non-batik practitioners chose 'ability to deliver a variety of complex designs' (15.94%). The least required feature for the batik printer was related to the size of the batik printer. The mapping between customer requirements (VOC) and technical requirements identified that the extruder design (21.3%), the heating element (18%), and nozzle diameter (17.8%) were the most critical components for the batik printer. Several conceptual designs of the extrusion unit, cartesian-based batik printer, and 2D image conversion using open-sourced software were proposed at the end of this work

    Automated Vision Based Defect Detection Using Gray Level Co-Occurrence Matrix For Beverage Manufacturing Industry

    Get PDF
    Defect inspection emerged as an important role for product quality monitoring process since it is a requirement of International Organization for Standardization (ISO) 9001. The used of manual inspection is impractical because of time consuming, human error, tiredness, repetitive and low productivity. Small and medium enterprises (SMEs) are industries that having problems in maintaining the quality of their products due to small capital provided. Therefore, automatic inspection is a promising approach to maintain product quality as well as to resolve the existing problems related to delay outputs and cost burden. This article presents a computerized analysis to detect color concentration defects that occur in beverage production based on texture information provided by gray level co-occurrence matrix (GLCM). Based on the texture information, GLCM cross-section is computed to extract the parameters for features of color concentration. The distance value between two colors is then computed using co-occurrence histogram. The defect results either pass or reject is determined using Euclidean distance and rule-based classification. The experimental results show 100% accuracy which makes the proposed technique can implimented for beverage manufacturing inspection process

    Triple-negative breast cancer and PTEN (phosphatase and tensin homologue)loss are predictors of BRCA1 germline mutations in women with early-onset and familial breast cancer, but not in women with isolated late-onset breast cancer

    Get PDF
    Introduction: Given that breast cancers in germline BRCA1 carriers are predominantly estrogen-negative and triple-negative, it has been suggested that women diagnosed with triple-negative breast cancer (TNBC) younger than 50 years should be offered BRCA1 testing, regardless of family cancer characteristics. However, the predictive value of triple-negative breast cancer, when taken in the context of personal and family cancer characteristics, is unknown. The aim of this study was to determine whether TNBC is a predictor of germline BRCA1 mutations, in the context of multiple predictive factors.Methods: Germline mutations in BRCA1 and BRCA2 were analyzed by Sanger sequencing and multiple ligation-dependent probe amplification (MLPA) analysis in 431 women from the Malaysian Breast Cancer Genetic Study, including 110 women with TNBC. Logistic regression was used to identify and to estimate the predictive strength of major determinants. Estrogen receptor (ER) and phosphatase and tensin homologue (PTEN) status were assessed and included in a modified Manchester scoring method.Results: Our study in an Asian series of TNBC patients demonstrated that 27 (24.5%) of 110 patients have germline mutations in BRCA1 (23 of 110) and BRCA2 (four of 110). We found that among women diagnosed with breast cancer aged 36 to 50 years but with no family history of breast or ovarian cancer, the prevalence of BRCA1 and BRCA2 mutations was similar in TNBC (8.5%) and non-TNBC patients (6.7%). By contrast, in women diagnosed with breast cancer, younger than 35 years, with no family history of these cancers, and in women with a family history of breast cancer, the prevalence of mutations was higher in TNBC compared with non-TNBC (28.0% and 9.9%; P = 0.045; and 42.1% and 14.2%; P < 0.0001, respectively]. Finally, we found that incorporation of estrogen-receptor and TNBC status improves the sensitivity of the Manchester Scoring method (42.9% to 64.3%), and furthermore, incorporation of PTEN status further improves sensitivity (42.9% to 85.7%).Conclusions: We found that TNBC is an important criterion for highlighting women who may benefit from genetic testing, but that this may be most useful for women with early-onset breast cancer (35 years or younger) or with a family history of cancers. Furthermore, addition of TNBC and PTEN status improves the sensitivity of the Manchester scoring method and may be particularly important in the Asian context, where risk-assessment models underestimate the number of mutation carriers. © 2012 Phuah et al.; licensee BioMed Central Ltd

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk.

    Get PDF
    Previous studies have suggested that polymorphisms in CASP8 on chromosome 2 are associated with breast cancer risk. To clarify the role of CASP8 in breast cancer susceptibility, we carried out dense genotyping of this region in the Breast Cancer Association Consortium (BCAC). Single-nucleotide polymorphisms (SNPs) spanning a 1 Mb region around CASP8 were genotyped in 46 450 breast cancer cases and 42 600 controls of European origin from 41 studies participating in the BCAC as part of a custom genotyping array experiment (iCOGS). Missing genotypes and SNPs were imputed and, after quality exclusions, 501 typed and 1232 imputed SNPs were included in logistic regression models adjusting for study and ancestry principal components. The SNPs retained in the final model were investigated further in data from nine genome-wide association studies (GWAS) comprising in total 10 052 case and 12 575 control subjects. The most significant association signal observed in European subjects was for the imputed intronic SNP rs1830298 in ALS2CR12 (telomeric to CASP8), with per allele odds ratio and 95% confidence interval [OR (95% confidence interval, CI)] for the minor allele of 1.05 (1.03-1.07), P = 1 × 10(-5). Three additional independent signals from intronic SNPs were identified, in CASP8 (rs36043647), ALS2CR11 (rs59278883) and CFLAR (rs7558475). The association with rs1830298 was replicated in the imputed results from the combined GWAS (P = 3 × 10(-6)), yielding a combined OR (95% CI) of 1.06 (1.04-1.08), P = 1 × 10(-9). Analyses of gene expression associations in peripheral blood and normal breast tissue indicate that CASP8 might be the target gene, suggesting a mechanism involving apoptosis.Part of this work was supported by the European Community´s Seventh Framework Programme under grant agreement number 223175 (grant number HEALTH-F2-2009-223175) (COGS). Funding for the iCOGS infrastructure came from: the European Community's Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A 10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112 - the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund. The ABCFS, NC-BCFR and OFBCR work was supported by the United States National Cancer Institute, National Institutes of Health (NIH) under RFA-CA-06-503 and through cooperative agreements with members of the Breast Cancer Family Registry (BCFR) and Principal Investigators, including Cancer Care Ontario (U01 CA69467), Northern California Cancer Center (U01 CA69417), University of Melbourne (U01 CA69638). Samples from the NC-BCFR were processed and distributed by the Coriell Institute for Medical Research. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the BCFR, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. The ABCFS was also supported by the National Health and Medical Research Council of Australia, the New South Wales Cancer Council, the Victorian Health Promotion Foundation (Australia) and the Victorian Breast Cancer Research Consortium. J.L.H. is a National Health and Medical Research Council (NHMRC) Australia Fellow and a Victorian Breast Cancer Research Consortium Group Leader. M.C.S. is a NHMRC Senior Research Fellow and a Victorian Breast Cancer Research Consortium Group Leader. The ABCS was supported by the Dutch Cancer Society [grants NKI 2007-3839; 2009 4363]; BBMRI-NL, which is a Research Infrastructure financed by the Dutch government (NWO 184.021.007); and the Dutch National Genomics Initiative. The ACP study is funded by the Breast Cancer Research Trust, UK. The work of the BBCC was partly funded by ELAN-Fond of the University Hospital of Erlangen. The BBCS is funded by Cancer Research UK and Breakthrough Breast Cancer and acknowledges NHS funding to the NIHR Biomedical Research Centre, and the National Cancer Research Network (NCRN). The BBCS GWAS received funding from The Institut National de Cancer. ES is supported by NIHR Comprehensive Biomedical Research Centre, Guy's & St. Thomas' NHS Foundation Trust in partnership with King's College London, United Kingdom. IT is supported by the Oxford Biomedical Research Centre. The BSUCH study was supported by the Dietmar-Hopp Foundation, the Helmholtz Society and the German Cancer Research Center (DKFZ). The CECILE study was funded by Fondation de France, Institut National du Cancer (INCa), Ligue Nationale contre le Cancer, Ligue contre le Cancer Grand Ouest, Agence Nationale de Sécurité Sanitaire (ANSES), Agence Nationale de la Recherche (ANR). The was supported by the Chief Physician Johan Boserup and Lise Boserup Fund, the Danish Medical Research Council and Herlev Hospital. The CNIO-BCS was supported by the Genome Spain Foundation, the Red Temática de Investigación Cooperativa en Cáncer and grants from the Asociación Española Contra el Cáncer and the Fondo de Investigación Sanitario (PI11/00923 and PI081120). The Human Genotyping-CEGEN Unit (CNIO) is supported by the Instituto de Salud Carlos III. The CTS was supported by the California Breast Cancer Act of 1993; National Institutes of Health (grants R01 CA77398 and the Lon V Smith Foundation [LVS39420].); the California Breast Cancer Research Fund (contract 97-10500). Collection of cancer incidence data used in this study was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885. The ESTHER study was supported by a grant from the Baden Württemberg Ministry of Science, Research and Arts. Additional cases were recruited in the context of the VERDI study, which was supported by a grant from the German Cancer Aid (Deutsche Krebshilfe). The GC-HBOC was supported by Deutsche Krebshilfe (107 352). The GENICA was funded by the Federal Ministry of Education and Research (BMBF) Germany grants 01KW9975/5, 01KW9976/8, 01KW9977/0 and 01KW0114, the Robert Bosch Foundation, Stuttgart, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany, as well as the Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany. The HEBCS was financially supported by the Helsinki University Central Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society, The Nordic Cancer Union and the Sigrid Juselius Foundation. The GWS population allele and genotype frequencies were obtained from the data source funded by the Nordic Center of Excellence in Disease Genetics based on samples regionally selected from Finland, Sweden and Denmark. The HERPACC was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Science, Sports, Culture and Technology of Japan, by a Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from Ministry Health, Labour and Welfare of Japan, by Health and Labour Sciences Research Grants for Research on Applying Health Technology from Ministry Health, Labour and Welfare of Japan and by National Cancer Center Research and Development Fund. The HMBCS was supported by a grant from the Friends of Hannover Medical School and by the Rudolf Bartling Foundation. Financial support for KARBAC was provided through the regional agreement on medical training and clinical research (ALF) between Stockholm County Council and Karolinska Institutet, The Swedish Cancer Society and the Gustav V Jubilee foundation. The KBCP was financially supported by the special Government Funding (EVO) of Kuopio University Hospital grants, Cancer Fund of North Savo, the Finnish Cancer Organizations, the Academy of Finland and by the strategic funding of the University of Eastern Finland. kConFab is supported by grants from the National Breast Cancer Foundation, the NHMRC, the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia and the Cancer Foundation of Western Australia. The kConFab Clinical Follow Up Study was funded by the NHMRC [145684, 288704, 454508]. Financial support for the AOCS was provided by the United States Army Medical Research and Materiel Command [DAMD17-01-1-0729], the Cancer Council of Tasmania and Cancer Foundation of Western Australia and the NHMRC [199600]. G.C.T. and P.W. are supported by the NHMRC. LAABC is supported by grants (1RB-0287, 3PB-0102, 5PB-0018, 10PB-0098) from the California Breast Cancer Research Program. Incident breast cancer cases were collected by the USC Cancer Surveillance Program (CSP), which is supported under subcontract by the California Department of Health. The CSP is also part of the National Cancer Institute's Division of Cancer Prevention and Control Surveillance, Epidemiology, and End Results Program, under contract number N01CN25403. LMBC is supported by the 'Stichting tegen Kanker' (232-2008 and 196-2010). Diether Lambrechts is supported by the FWO and the KULPFV/10/016-SymBioSysII. The MARIE study was supported by the Deutsche Krebshilfe e.V. [70-2892-BR I], the Hamburg Cancer Society, the German Cancer Research Center and the Federal Ministry of Education and Research (BMBF) Germany [01KH0402, 01KH0408, 01KH0409]. MBCSG is supported by grants from the Italian Association for Cancer Research (AIRC) and by funds from the Italian citizens who allocated the 5/1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects “5x1000”). The MCBCS was supported by the NIH grant CA128978, an NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer [CA116201], the Breast Cancer Research Foundation, a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCCS was further supported by Australian NHMRC grants 209057, 251553 and 504711 and by infrastructure provided by Cancer Council Victoria. The MEC was support by NIH grants CA63464, CA54281, CA098758 and CA132839. The work of MTLGEBCS was supported by the Quebec Breast Cancer Foundation, the Canadian Institutes of Health Research for the “CIHR Team in Familial Risks of Breast Cancer” program – grant # CRN-87521 and the Ministry of Economic Development, Innovation and Export Trade – grant # PSR-SIIRI-701. MYBRCA is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation (MOSTI), Malaysian Ministry of Higher Education (UM.C/HlR/MOHE/06) and Cancer Research Initiatives Foundation (CARIF). Additional controls were recruited by the Singapore Eye Research Institute, which was supported by a grant from the Biomedical Research Council (BMRC08/1/35/19/550), Singapore and the National medical Research Council, Singapore (NMRC/CG/SERI/2010). The NBCS was supported by grants from the Norwegian Research council, 155218/V40, 175240/S10 to ALBD, FUGE-NFR 181600/V11 to VNK and a Swizz Bridge Award to ALBD. The NBCS was supported by grants from the Norwegian Research council, 155218/V40, 175240/S10 to ALBD, FUGE-NFR 181600/V11 to VNK and a Swizz Bridge Award to ALBD. The NBHS was supported by NIH grant R01CA100374. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The OBCS was supported by research grants from the Finnish Cancer Foundation, the Academy of Finland Centre of Excellence grant 251314, the Sigrid Juselius Foundation, the University of Oulu, and the Oulu University Hospital special Govermental EVO Research Funds. The OFBCR work was supported by grant UM1 CA164920 from the National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government or the BCFR. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-NL CP16). The PBCS was funded by Intramural Research Funds of the National Cancer Institute, Department of Health and Human Services, USA. The pKARMA study was supported by Märit and Hans Rausings Initiative Against Breast Cancer. The RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318). The SASBAC study was supported by funding from the Agency for Science, Technology and Research of Singapore (A*STAR), the US National Institute of Health (NIH) and the Susan G. Komen Breast Cancer Foundation. The SBCGS was supported primarily by NIH grants R01CA64277, R01CA148667, and R37CA70867. Biological sample preparation was conducted the Survey and Biospecimen Shared Resource, which is supported by P30 CA68485. The SBCS was supported by Yorkshire Cancer Research awards S295, S299, S305PA, and by the Sheffield Experimental Cancer Medicine Centre Network. NJC was supported by NCI grant R01 CA163353 and The Avon Foundation (02-2009-080). The SCCS is supported by a grant from the National Institutes of Health (R01 CA092447). Data on SCCS cancer cases used in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry; Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of Health, Cancer Registry, 4815 W. Markham, Little Rock, AR 72205. The Arkansas Central Cancer Registry is fully funded by a grant from National Program of Cancer Registries, Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from Mississippi were collected by the Mississippi Cancer Registry which participates in the National Program of Cancer Registries (NPCR) of the Centers for Disease Control and Prevention (CDC). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the Mississippi Cancer Registry. SEARCH is funded by programme grants from Cancer Research UK [C490/A10124, C490/A16561] and supported by the UK National Institute for Health Research Biomedical Research Centre at the University of Cambridge. The SEBCS was supported by the Korea Health 21 R&D Project [AO30001], Ministry of Health and Welfare, Republic of Korea. SGBCC is funded by the National Medical Research Council start-up Grant and Centre Grant (NMRC/CG/NCIS /2010). Additional controls were recruited by the Singapore Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC), which was funded by the Biomedical Research Council, grant number: 05/1/21/19/425. SKKDKFZS is supported by the DKFZ. The SZBCS was supported by Grant PBZ_KBN_122/P05/2004. The TBCS was funded by The National Cancer Institute Thailand. The TNBCC was supported by: MCBCS (National Institutes of Health Grants CA122340 and a Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), a generous gift from the David F. and Margaret T. Grohne Family Foundation and the Ting Tsung and Wei Fong Chao Foundation. This research has been partly financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research & Technology: ARISTEIA. Investing in knowledge society through the European Social Fund; and the Stefanie Spielman Breast Fund and the Ohio State University Comprehensive Cancer Center. The TWBCS is supported by the Taiwan Biobank project of the Institute of Biomedical Sciences, Academia Sinica, Taiwan. The UKBGS is funded by Breakthrough Breast Cancer and the Institute of Cancer Research (ICR). ICR acknowledges NHS funding to the NIHR Biomedical Research Centre. The Nurses’ Health Studies (CGEMS) are supported by NIH grants CA 65725, CA87969, CA49449, CA67262, CA50385 and 5UO1CA098233. The UK2 GWAS was funded by Wellcome Trust and Cancer Research UK. It included samples collected through the FBCS study, which is funded by Cancer Research UK [C8620/A8372]. It included control data obtained through the WTCCC which was funded by the Wellcome Trust. The DFBBCS GWAS was funded by The Netherlands Organisation for Scientific Research (NWO) as part of a ZonMw/VIDI grant number 91756341. Control GWA genotype data from the Rotterdam Study were funded by NWO Groot Investments (project nr. 175.010.2005.011). We thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out. This study would not have been possible without the contributions of the following: Andrew Berchuck (OCAC), Rosalind A. Eeles, Ali Amin Al Olama, Zsofia Kote-Jarai, Sara Benlloch (PRACTICAL), Antonis Antoniou, Lesley McGuffog, Ken Offit (CIMBA), Andrew Lee, and Ed Dicks, and the staff of the Centre for Genetic Epidemiology Laboratory, the staff of the CNIO genotyping unit, Sylvie LaBoissière and Frederic Robidoux and the staff of the McGill University and Génome Québec Innovation Centre, the staff of the Copenhagen DNA laboratory, and Julie M. Cunningham, Sharon A. Windebank, Christopher A. Hilker, Jeffrey Meyer and the staff of Mayo Clinic Genotyping Core Facility. We also thank Maggie Angelakos, Judi Maskiell, Gillian Dite (ABCFS), and extend our thanks to the many women and their families that generously participated in the Australian Breast Cancer Family Study and consented to us accessing their pathology material. JLH is a National Health and Medical Research Council Australia Fellow. MCS is a National Health and Medical Research Council Senior Research Fellow. JLH and MCS are both group leaders of the Victoria Breast Cancer Research Consortium. We thank Sten Cornelissen, Richard van Hien, Linde Braaf, Frans Hogervorst, Senno Verhoef, Ellen van der Schoot, Femke Atsma (ABCS). The ACP study wishes to thank the participants in the Thai Breast Cancer study. Special Thanks also go to the Thai Ministry of Public Health (MOPH), doctors and nurses who helped with the data collection process. Finally, the study would like to thank Dr Prat Boonyawongviroj, the former Permanent Secretary of MOPH and Dr Pornthep Siriwanarungsan, the Department Director-General of Disease Control who have supported the study throughout. We thank Eileen Williams, Elaine Ryder-Mills, Kara Sargus (BBCS), Niall McInerney, Gabrielle Colleran, Andrew Rowan, Angela Jones (BIGGS), Peter Bugert, and Medical Faculty Mannheim (BSUCH). We thank the staff and participants of the Copenhagen General Population Study, and for excellent technical assistance: Dorthe Uldall Andersen, Maria Birna Arnadottir, Anne Bank, and Dorthe Kjeldgård Hansen. The Danish Breast Cancer Group (DBCG) is acknowledged for the tumor information. We thank Guillermo Pita, Charo Alonso, Daniel Herrero, Nuria Álvarez, Pilar Zamora, Primitiva Menendez, the Human Genotyping-CEGEN Unit (CNIO), Hartwig Ziegler, Sonja Wolf, and Volker Hermann (ESTHER). We thank Heide Hellebrand, Stefanie Engert (GC-HBOC). GC-HBOC would like to thank the following persons for providing additional informations and samples: Prof. Dr. Norbert Arnold, Dr. Sabine Preissler-Adams, Dr. Monika Mareeva-Varon, Dr. Dieter Niederacher, Prof. Dr. Brigitte Schlegelberger, Dr. Clemens Mül. The GENICA Network: Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany; [HB, Wing-Yee Lo, Christina Justenhoven], German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) [HB], Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany [YDK, Christian Baisch], Institute of Pathology, University of Bonn, Germany [Hans-Peter Fischer], Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany [Ute Hamann] and Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr University Bochum (IPA), Bochum, Germany [TB, Beate Pesch, Sylvia Rabstein, Anne Lotz]; Institute of Occupational Medicine and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Germany [Volker Harth]. HEBCS thanks Kirsimari Aaltonen, Tuomas Heikkinen, and Dr. Karl von Smitten and RN Irja Erkkilä for their help with the HEBCS data and samples. We thank Peter Hillemanns, Hans Christiansen and Johann H. Karstens (HMBCS), Eija Myöhänen, Helena Kemiläinen (KBCP). kConFab thanks Heather Thorne, Eveline Niedermayr, the AOCS Management Group (D Bowtell, G Chenevix-Trench, A deFazio, D Gertig, A Green, P Webb), the ACS Management Group (A

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P = 9.2 x 10(-20)), ER-negative BC (P = 1.1 x 10(-13)), BRCA1-associated BC (P = 7.7 x 10(-16)) and triple negative BC (P-diff = 2 x 10(-5)). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P = 2 x 10(-3)) and ABHD8 (PPeer reviewe

    al- ‘Urf and its applicability in Islamic deposit products

    No full text
    Over the last decade Islamic banking has clear taken root. What began as novelty has made major strides. The main purpose of this paper was to explain the applicability of ‘urf in Islamic deposit products. This study set about the application of ‘urf in Islamic law briefly, moreover, the concept of deposit products in conventional bank just analysed while it in Islamic bank effectively analysed. The types of deposit products in both banks are chiefly current, saving and investment accounts. Moreover, the basis of each production from primary and secondary sources was explained to shows how they compliant with Sharīʿah. In addition, it mentioned the model of deposit products in Islamic banking that represented as wadī‘ah, qarḍ Hassan and muḍārabah that are replicate of conventional banking. Furthermore, it highlights the relationship between the depositor and depositee, as well as the obligations of both parties. The study argued that the adoption of the conventional banking structural practices by the Islamic banking is valid especially area of deposit and investment, since this account can be devoid of the interest element, Islamic banks are permitted by Sharīʿah to offer similar facilities

    Surface roughness modeling in high speed hard turning using regression analysis

    No full text
    Surface roughness plays an important role in the final quality of the machining parts. Therefore, predicting and simulating the roughness before the machining process is an important issue. The purpose of this research is to develop a reliable model for predicting and simulating the average surface roughness (Ra) in high speed hard turning. An experimental investigation was conducted to predict the surface roughness in the finish hard turning with higher cutting speed. A set of sparse experimental data for finish turning of hardened steel (AISI 4340) and mixed ceramic inserts made up of aluminum oxide and titanium carbide were used as work piece and cutting tools materials. Four different models for the surface roughness were developed by using regression analysis and artificial neural network techniques. Two different techniques have been used in the regression analysis; Box Behnken Design (BBD) and Face Central Cubic Design (FCC).. The BBD model gave better prediction than the FCC in the design boundar
    corecore