295 research outputs found

    Optimised design of fibre-based pulse compressor for gain-switched DFB laser pulses at 1.5 µm

    Get PDF
    An optical-fibre based pulse compressor for gain-switched DFB laser pulses has been optimised using a systematic procedure based on the initial complete characterisation of the laser pulses, followed by numerical simulations of the pulse propagation in different types of fibre to determine the required lengths for optimum compression. Using both linear and nonlinear compression techniques, an optimum compression factor of 12 is achieved

    Ultra-sensitive all-optical sampling at 1.5 μm using waveguide two-photon absorption

    Get PDF
    We demonstrate a simple and ultra-sensitive all-optical sampling system suitable for the characterization of high capacity (> 100 Gbit/s) single channel systems operating around 1.5 µm. The system is based on the nonlinear effect of two-photon-absorption in a commercial 1.3 µm semiconductor laser and, using only direct detection of the unamplified two photon absorption photocurrent, we have achieved a temporal resolution of around 2 ps, and a sensitivity of less than 2 mW²

    Instabilities in the two-dimensional cubic nonlinear Schrodinger equation

    Full text link
    The two-dimensional cubic nonlinear Schrodinger equation (NLS) can be used as a model of phenomena in physical systems ranging from waves on deep water to pulses in optical fibers. In this paper, we establish that every one-dimensional traveling wave solution of NLS with trivial phase is unstable with respect to some infinitesimal perturbation with two-dimensional structure. If the coefficients of the linear dispersion terms have the same sign then the only unstable perturbations have transverse wavelength longer than a well-defined cut-off. If the coefficients of the linear dispersion terms have opposite signs, then there is no such cut-off and as the wavelength decreases, the maximum growth rate approaches a well-defined limit.Comment: 4 pages, 4 figure

    2d Stringy Black Holes and Varying Constants

    Full text link
    Motivated by the recent interest on models with varying constants and whether black hole physics can constrain such theories, two-dimensional charged stringy black holes are considered. We exploit the role of two-dimensional stringy black holes as toy models for exploring paradoxes which may lead to constrains on a theory. A two-dimensional charged stringy black hole is investigated in two different settings. Firstly, the two-dimensional black hole is treated as an isolated object and secondly, it is contained in a thermal environment. In both cases, it is shown that the temperature and the entropy of the two-dimensional charged stringy black hole are decreased when its electric charge is increased in time. By piecing together our results and previous ones, we conclude that in the context of black hole thermodynamics one cannot derive any model independent constraints for the varying constants. Therefore, it seems that there aren't any varying constant theories that are out of favor with black hole thermodynamics.Comment: 12 pages, LaTeX, to appear in JHE

    Border crossings in the African travel narratives of Ibn Battuta, Richard Burton and Paul Theroux

    Get PDF
    This article compares the representation of African borders in the 14th-century travelogue of Ibn Battuta, the 19th-century travel narrative of Richard Burton and the 21st-century travel writing of Paul Theroux. It examines the mutually constitutive relationship between conceptions of literal territorial boundaries and the figurative boundaries of the subject that ventures across borders in Africa. The border is seen as a liminal zone which paradoxically separates and joins spaces. Accounts of border crossings in travel writing from different periods suggest the historicity and cultural specificity of conceptions of geographical borders, and the way they index the “boundaries” of the subjects who cross them. Tracing the transformations in these conceptions of literal and metaphorical borders allows one to chart the emergence of the dominant contemporary idea of “Africa” as the inscrutable, savage continent

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters
    corecore