14 research outputs found
Biomarkers of Nutrition for Development (BOND)—Iron Review
This is the fifth in the series of reviews developed as part of the Biomarkers of Nutrition for Development (BOND) program. The BOND Iron Expert Panel (I-EP) reviewed the extant knowledge regarding iron biology, public health implications, and the relative usefulness of currently available biomarkers of iron status from deficiency to overload. Approaches to assessing intake, including bioavailability, are also covered. The report also covers technical and laboratory considerations for the use of available biomarkers of iron status, and concludes with a description of research priorities along with a brief discussion of new biomarkers with potential for use across the spectrum of activities related to the study of iron in human health. The I-EP concluded that current iron biomarkers are reliable for accurately assessing many aspects of iron nutrition. However, a clear distinction is made between the relative strengths of biomarkers to assess hematological consequences of iron deficiency versus other putative functional outcomes, particularly the relationship between maternal and fetal iron status during pregnancy, birth outcomes, and infant cognitive, motor and emotional development. The I-EP also highlighted the importance of considering the confounding effects of inflammation and infection on the interpretation of iron biomarker results, as well as the impact of life stage. Finally, alternative approaches to the evaluation of the risk for nutritional iron overload at the population level are presented, because the currently designated upper limits for the biomarker generally employed (serum ferritin) may not differentiate between true iron overload and the effects of subclinical inflammation
Comparison of Model Estimated and Measured Direct-Normal Solar Irradiance
Direct-normal solar irradiance (DNSI), the total energy in the solar spectrum incident in unit time on a unit area at the earth's surface perpendicular to the direction to the Sun, depends only on atmospheric extinction of solar energy without regard to the details of the extinction - whether absorption or scattering. Here we report a set of closure experiments performed in north-central Oklahoma in April 1996, under cloud-free conditions, wherein measured atmospheric composition and aerosol optical thickness are input to a radiative transfer model, MODTRAN-3, to estimate DNSI, which is then compared with measured values obtained with normal incidence pyrheliometers and absolute cavity radiometers. Uncertainty in aerosol optical thickness (AOT) dominates the uncertainty in DNSI calculation. AOT measured by an independently calibrated sunphotometer and a rotating Direct-Normal Solar Irradiance - A Closure Experiment, Halthore et al. 2 shadow-band radiometer agree to within the uncerta..
An Automated Analyzer to Measure Surface-Atmosphere Exchange Fluxes of Water Soluble Inorganic Aerosol Compounds and Reactive Trace Gases
Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3−, Cl−, SO42−). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3σ-definition) under field conditions of typically: 136/207, 135/114, 29/22, 119/92, and 189/159 ng m−3 for NH3/NH4+, HNO3/NO3−, HONO/NO2−, HCl/Cl− and SO2/SO42−, respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3−9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface−atmosphere exchange fluxes under typical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique
Lipid-mediated Wnt protein stabilization enables serum-free culture of human organ stem cells
Wnt signalling proteins are essential for culture of human organ stem cells in organoids, but most Wnt protein formulations are poorly active in serum-free media. Here we show that purified Wnt3a protein is ineffective because it rapidly loses activity in culture media due to its hydrophobic nature, and its solubilization requires a detergent, CHAPS (3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate), that interferes with stem cell self-renewal. By stabilizing the Wnt3a protein using phospholipids and cholesterol as carriers, we address both problems: Wnt activity remains stable in serum-free media, while non-toxic carriers allow the use of high Wnt concentrations. Stabilized Wnt3a supports strongly increased self-renewal of organ and embryonic stem cells and the serum-free establishment of human organoids from healthy and diseased intestine and liver. Moreover, the lipophilicity of Wnt3a protein greatly facilitates its purification. Our findings remove a major obstacle impeding clinical applications of adult stem cells and offer advantages for all cell culture uses of Wnt3a protein
A European Aerosol Phenomenology. Part 2: Chemical Characteristics of Particulate Matter at Kerbside, Urban, Rural and Background Sites in Europe.
Abstract not availableJRC.H-Institute for environment and sustainability (Ispra