4,337 research outputs found
Current knowledge of external sulfate attack
This paper offers an update of the current understanding of sulfate attack, with emphasis on the sulfates present in an external water source percolating through, and potentially reacting with, the cement matrix. The paper considers the explanations put forward to explain sulfate attack, both from a chemical and microstructural perspective. Similarly, this paper reviews work on the physical damage caused by the precipitation of sulfate salts in porous materials. With the increased use of binary and ternary blends, this paper also considers the impact of binder composition on sulfate resistance, and similarly reviews how the nature of the sulfate species can affect the nature and extent of any deterioration. This then leads on to the important consideration of differences between field- and lab-based studies; reviewing the effect of various experimental parameters on sulfate resistance. This latter topic is of great importance to anyone who wishes to carry out such experiments
Structural and magnetic diversity in alkali-metal Manganate chemistry : evaluating donor and alkali-metal effects in co-complexation processes
By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [(KMn(CH2SiMe3)3C6H6)2] (2) and [(NaMn(CH2SiMe3)3)2(dioxane)7] (5); and to more complex supramolecular networks [(NaMn(CH2SiMe3)3)∞] (1) and [(Na2Mn2(CH2SiMe3)6(DABCO)2)∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [((dioxane)6K2Mn2(CH2SiMe3)4(O(CH2)2OCH=CH2)2)∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways
Reason and religious belief in traditional epistemology, reformed epistemology and Wittgenstein: A critical comparative inquiry.
"In this thesis the author investigates the rationality of religious belief. In the first chapter he critically discusses the two main strands of classical epistemology (internalism and externalism), while focusing on the internalist view of foundationalism. Foundationalists maintain that certain propositions are basic in a rational belief system. These are rationally justified when apprehended, thus they serve as a foundation for knowledge. Formulating a criterion to determine what basic beliefs are has proven to be an insurmountable difficulty for foundationalism, however. The author argues that there is no rationale for strict criteria of basic beliefs. In the second chapter, he considers a group of philosophers (the reformed epistemologists) who recognize this problem of the criterion of foundational beliefs, yet still hold that it is correct to think that religious belief has foundations. They appeal to a descriptive sense of basicality, and not one that is supported by strict logical criteria. If one can see that a belief acts as a ground of his belief system in a moment when it is apprehended, the reformists argue, one can claim that it is de facto foundational. In the third chapter the author considers imcarmy similarities in investigative style between the reformed epistemologist and Ludwig Wittgenstein, though he eventually focuses upon two differentiating features. He argues that Wittgenstein is right to claim that basic beliefs ought not be a focus of rationality. Basic beliefs, like "God exists", are held in place by non-basic beliefs which determine what God's existence amounts to. Taken as it is, "God exists" expresses nothing. It is not a foundation for belief in God, but like an axis around which non-basic beliefs revolve. The second difficulty that the reformist faces, the author argues, is that if one need only describe how a belief acts as a foundation of knowledge in a particular circumstance, then it seems that nearly any belief could conceivably be a foundation of knowledge. One need only appeal to justifying circumstances in which a belief could be described as acting foundationally. Conversely, he shows that Wittgenstein can argue against this charge, but it stands in the way of fully accepting reformed epistemology as an epistemology of religious belief.
Synthesis, structure and solution studies on mixed aryl/alkyl lithium zincates
Novel homo- and heteroleptic lithium zincates have been prepared by cocomplexation reactions of Zn(CH2SiMe3)2 and PhLi in low-polarity hydrocarbon solvents. X-ray crystallographic studies of products obtained by reacting the organometallic reagents in benzene or toluene yield the novel solvent-free solid-state arrangement [Li4Zn3Ph5(CH2SiMe3)5]⋡ (1). Combining Zn(CH2SiMe3)2 and PhLi in hexane in the presence of the polydentate N-donors PMDETA (N,N,N′,N′′,N′′-pentamethyldiethylenetriamine) or TMEDA (N,N,N′,N′-tetramethylethylenediamine) reveals monomeric heteroleptic [(PMDETA)LiZn(CH2SiMe3)2Ph] (2) and homoleptic [(TMEDA)LiZn(CH2SiMe3)3] (3), the result of a disproportionation process, respectively. NMR spectroscopic studies suggest that 2 and 3 retain their discrete contacted ion-pair solid-state structures in benzene solution. Variable-temperature NMR spectroscopic studies of 2 in [D8]THF reveal a complex equilibrium also including [LiZn(CH2SiMe3)3], [LiZn(CH2SiMe3)Ph2] and [LiZnPh3], an equilibrium process analogous to that of 1 in THF. This study further highlights the complexity of these reactions, which at first would appear simple
Differential branching fraction and angular analysis of decays
The differential branching fraction of the rare decay is measured as a function of , the
square of the dimuon invariant mass. The analysis is performed using
proton-proton collision data, corresponding to an integrated luminosity of 3.0
\mbox{ fb}^{-1}, collected by the LHCb experiment. Evidence of signal is
observed in the region below the square of the mass. Integrating
over 15 < q^{2} < 20 \mbox{ GeV}^2/c^4 the branching fraction is measured as
d\mathcal{B}(\Lambda^{0}_{b} \rightarrow \Lambda \mu^+\mu^-)/dq^2 = (1.18 ^{+
0.09} _{-0.08} \pm 0.03 \pm 0.27) \times 10^{-7} ( \mbox{GeV}^{2}/c^{4})^{-1},
where the uncertainties are statistical, systematic and due to the
normalisation mode, , respectively.
In the intervals where the signal is observed, angular distributions are
studied and the forward-backward asymmetries in the dimuon ()
and hadron () systems are measured for the first time. In the
range 15 < q^2 < 20 \mbox{ GeV}^2/c^4 they are found to be A^{l}_{\rm FB} =
-0.05 \pm 0.09 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)} and A^{h}_{\rm FB} =
-0.29 \pm 0.07 \mbox{ (stat)} \pm 0.03 \mbox{ (syst)}.Comment: 27 pages, 10 figures, Erratum adde
Measurement of the mass and lifetime of the baryon
A proton-proton collision data sample, corresponding to an integrated
luminosity of 3 fb collected by LHCb at and 8 TeV, is used
to reconstruct , decays. Using the , decay mode for calibration, the lifetime ratio and absolute
lifetime of the baryon are measured to be \begin{align*}
\frac{\tau_{\Omega_b^-}}{\tau_{\Xi_b^-}} &= 1.11\pm0.16\pm0.03, \\
\tau_{\Omega_b^-} &= 1.78\pm0.26\pm0.05\pm0.06~{\rm ps}, \end{align*} where the
uncertainties are statistical, systematic and from the calibration mode (for
only). A measurement is also made of the mass difference,
, and the corresponding mass, which
yields \begin{align*} m_{\Omega_b^-}-m_{\Xi_b^-} &= 247.4\pm3.2\pm0.5~{\rm
MeV}/c^2, \\ m_{\Omega_b^-} &= 6045.1\pm3.2\pm 0.5\pm0.6~{\rm MeV}/c^2.
\end{align*} These results are consistent with previous measurements.Comment: 11 pages, 5 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-008.htm
Study of and decays and determination of the CKM angle
We report a study of the suppressed and favored
decays, where the neutral meson is detected
through its decays to the and CP-even and
final states. The measurement is carried out using a proton-proton
collision data sample collected by the LHCb experiment, corresponding to an
integrated luminosity of 3.0~fb. We observe the first significant
signals in the CP-even final states of the meson for both the suppressed
and favored modes, as well as
in the doubly Cabibbo-suppressed final state of the decay. Evidence for the ADS suppressed decay , with , is also presented. From the observed
yields in the , and their
charge conjugate decay modes, we measure the value of the weak phase to be
. This is one of the most precise
single-measurement determinations of to date.Comment: 22 pages, 9 figures; All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm
Model-independent evidence for contributions to decays
The data sample of decays acquired with the
LHCb detector from 7 and 8~TeV collisions, corresponding to an integrated
luminosity of 3 fb, is inspected for the presence of or
contributions with minimal assumptions about
contributions. It is demonstrated at more than 9 standard deviations that
decays cannot be described with
contributions alone, and that contributions play a dominant role in
this incompatibility. These model-independent results support the previously
obtained model-dependent evidence for charmonium-pentaquark
states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the
end
Study of charmonium production in b -hadron decays and first evidence for the decay Bs0
Using decays to φ-meson pairs, the inclusive production of charmonium states in b-hadron decays is studied with pp collision data corresponding to an integrated luminosity of 3.0 fb−1, collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. Denoting byBC ≡ B(b → C X) × B(C → φφ) the inclusive branching fraction of a b hadron to a charmonium state C that decays into a pair of φ mesons, ratios RC1C2 ≡ BC1 /BC2 are determined as Rχc0ηc(1S) = 0.147 ± 0.023 ± 0.011, Rχc1ηc(1S) =0.073 ± 0.016 ± 0.006, Rχc2ηc(1S) = 0.081 ± 0.013 ± 0.005,Rχc1 χc0 = 0.50 ± 0.11 ± 0.01, Rχc2 χc0 = 0.56 ± 0.10 ± 0.01and Rηc(2S)ηc(1S) = 0.040 ± 0.011 ± 0.004. Here and below the first uncertainties are statistical and the second systematic.Upper limits at 90% confidence level for the inclusive production of X(3872), X(3915) and χc2(2P) states are obtained as RX(3872)χc1 < 0.34, RX(3915)χc0 < 0.12 andRχc2(2P)χc2 < 0.16. Differential cross-sections as a function of transverse momentum are measured for the ηc(1S) andχc states. The branching fraction of the decay B0s → φφφ is measured for the first time, B(B0s → φφφ) = (2.15±0.54±0.28±0.21B)×10−6. Here the third uncertainty is due to the branching fraction of the decay B0s → φφ, which is used for normalization. No evidence for intermediate resonances is seen. A preferentially transverse φ polarization is observed.The measurements allow the determination of the ratio of the branching fractions for the ηc(1S) decays to φφ and p p asB(ηc(1S)→ φφ)/B(ηc(1S)→ p p) = 1.79 ± 0.14 ± 0.32
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
- …
