34 research outputs found

    Dynamical relaxation of the CP phases in next-to-minimal supersymmetry

    Get PDF
    After promoting the phases of the soft masses to dynamical fields corresponding to Goldstone bosons of spontaneously broken global symmetries in the supersymmetry breaking sector, the next-to-minimal supersymmetric model is found to solve the μ\mu problem and the strong CP problem simultaneously with an invisible axion. The domain wall problem persists in the form of axionic domain formation. Relaxation dynamics of the physical CP-violating phases is determined only by the short-distance physics and their relaxation values are not necessarily close to the CP-conserving points. Having observable supersymmetric CP violation and avoiding the axionic domain walls both require nonminimal flavor structures.Comment: 13 pp, 3 figs, published versio

    Search for heavy lepton partners of neutrinos in proton-proton collisions in the context of the type III seesaw mechanism

    Get PDF
    This is the Pre-print version of the Article. The official publishe version can be accessed from the link below - Copyright @ 2012 ElsevierA search is presented in proton–proton collisions at sqrt(s) = 7TeV for fermionic triplet states expected in type III seesaw models. The search is performed using final states with three isolated charged leptons and an imbalance in transverse momentum. The data, collected with the CMS detector at the LHC, correspond to an integrated luminosity of 4.9 fb−1. No excess of events is observed above the background predicted by the standard model, and the results are interpreted in terms of limits on production cross sections and masses of the heavy partners of the neutrinos in type III seesaw models. Depending on the considered scenarios, lower limits are obtained on the mass of the heavy partner of the neutrino that range from 180 to 210 GeV. These are the first limits on the production of type III seesaw fermionic triplet states reported by an experiment at the LHC.This study is spported by the BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEP, IPST and NECTEC (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie programme and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Search for charged Higgs bosons decaying via H ± → τν in tt t\overline t events using pp collision data at s=7  TeV \sqrt {s} = 7\;TeV with the ATLAS detector

    Full text link

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Challenges and Opportunities for the community of Food Sciences to contribute Towards a Society of Healthier Consumers and a Better World

    No full text
    Despite the tremendous scientific and technological achievements in the production of food, human well-being has not been served to a satisfactory extent. Millions of people are literally killing themselves by excessive eating or wrong use of food, leading to obesity and nutrition-related diseases. At the same time millions of people continue to suffer from lack of food, leading to starvation, malnutrition and death, often before reaching adult age. Parallel to striving for better-safer-healthier food, the community of Food Sciences is faced with the challenge to help educate the average consumer on how to select, handle, store and use food for safe and healthy eating. The need to reshape and reform public education to better serve this task is obvious. What is also obvious is the need for medical professionals to recognize healthy eating (and exercise) as the most valuable tool in preventive medical care. This perspective will concentrate on challenges and opportunities for Food Scientists/Engineers: to contribute towards a society of well-informed, self-protected, active and considerate citizens; to support public (food-related) education and actively participate in the fight against obesity and nutrition-related diseases; to intervene in decision making bodies and underline the importance of education on nutrition and food; to invent avenues and possibilities to contribute to the fight against world hunger; and all in all, to contribute towards a healthier world, a world that will not be split between hunger and obesity.</span

    On the direct osmotic concentration of liquid foods, part I: impact of process parameters on process performance

    No full text
    Abstract In a series of two articles, this paper (part I) deals with the impact of process parameters on process performance, while part II deals with process modelling. In this study, a pilot scale, direct osmotic (membrane) concentration unit was developed and its performance was studied. The unit was built around a flat geometry membrane module with a contacting area of 0.09 m 2 (1 ft. 2 ). Flat, square, reverse osmosis-type membrane sheets with varying characteristics were used with the osmotic module (cell). Model fluids, such as deionised water and low-concentration sucrose or glucose solutions, were utilized as feed fluids to study (and model) the impact of experimental parameters on process performance. Solutions of sodium chloride (NaCl) were used as osmotic media. Membrane characteristics, feed and osmotic medium concentrations, feed and osmotic medium flow rates, all had a significant impact on the performance of the osmotic module, as measured by the water permeation flux. Experimental data gave a clear indication that at high flow rates compaction of the supporting membrane fabric can in fact cancel the positive effect of improved contacting (larger film coefficients) on water flux
    corecore