165 research outputs found

    A Note on Solid-State Maxwell Demon

    Full text link
    Starting from 2002, at least two kinds of laboratory-testable, solid-state Maxwell demons have been proposed that utilize the electric field energy of an open-gap n-p junction and that seem to challenge the validity of the Second Law of Thermodynamics. In the present paper we present some arguments against the alleged functioning of such devices.Comment: 9 pages, 4 figures. Foundations of Physics, forthcoming. arXiv admin note: substantial text overlap with arXiv:1101.505

    Phase Farming with Trees: A report for the RIRDC/LWRRDC/FWPRDC Joint Venture Agroforestry Program

    Get PDF
    A scoping study was undertaken to determine the economic and biophysical feasibility of a proposal to research a system of phase farming with trees (PFT) in medium to low (300-600 mm) rainfall areas of southern Australia. This system is designed to use trees grown in very short term rotations (3-5 years) to rapidly de-water farming catchments, at risk of salinity, by depleting unsaturated stored soil water and reducing recharge while producing utilizable products. If feasible, the system will utilize a resource that is currently contributing to environmental problems while building more sustainable agricultural systems. Potential benefits include decreased salinization, improved farm cash flows, improved soil structure and acting as a disease and weed break..

    Fast evaluation of appointment schedules for outpatients in health care

    Get PDF
    We consider the problem of evaluating an appointment schedule for outpatients in a hospital. Given a fixed-length session during which a physician sees K patients, each patient has to be given an appointment time during this session in advance. When a patient arrives on its appointment, the consultations of the previous patients are either already finished or are still going on, which respectively means that the physician has been standing idle or that the patient has to wait, both of which are undesirable. Optimising a schedule according to performance criteria such as patient waiting times, physician idle times, session overtime, etc. usually requires a heuristic search method involving a huge number of repeated schedule evaluations. Hence, the aim of our evaluation approach is to obtain accurate predictions as fast as possible, i.e. at a very low computational cost. This is achieved by (1) using Lindley's recursion to allow for explicit expressions and (2) choosing a discrete-time (slotted) setting to make those expression easy to compute. We assume general, possibly distinct, distributions for the patient's consultation times, which allows us to account for multiple treatment types, as well as patient no-shows. The moments of waiting and idle times are obtained. For each slot, we also calculate the moments of waiting and idle time of an additional patient, should it be appointed to that slot. As we demonstrate, a graphical representation of these quantities can be used to assist a sequential scheduling strategy, as often used in practice

    The STAR Time Projection Chamber: A Unique Tool for Studying High Multiplicity Events at RHIC

    Full text link
    The STAR Time Projection Chamber (TPC) is used to record collisions at the Relativistic Heavy Ion Collider (RHIC). The TPC is the central element in a suite of detectors that surrounds the interaction vertex. The TPC provides complete coverage around the beam-line, and provides complete tracking for charged particles within +- 1.8 units of pseudo-rapidity of the center-of-mass frame. Charged particles with momenta greater than 100 MeV/c are recorded. Multiplicities in excess of 3,000 tracks per event are routinely reconstructed in the software. The TPC measures 4 m in diameter by 4.2 m long, making it the largest TPC in the world.Comment: 28 pages, 11 figure

    Continental-scale geographic change across zealandia during paleogene subduction initiation

    Get PDF
    Data from International Ocean Discovery Program (IODP) Expedition 371 reveal vertical movements of 1-3 km in northern Zealandia during early Cenozoic subduction initiation in the western Pacific Ocean. Lord Howe Rise rose from deep (~1 km) water to sea level and subsided back, with peak uplift at 50 Ma in the north and between 41 and 32 Ma in the south. The New Caledonia Trough subsided 2-3 km between 55 and 45 Ma. We suggest these elevation changes resulted from crust delamination and mantle flow that led to slab formation. We propose a "subduction resurrection" model in which (1) a subduction rupture event activated lithospheric-scale faults across a broad region during less than ~5 m.y., and (2) tectonic forces evolved over a further 4-8 m.y. as subducted slabs grew in size and drove plate-motion change. Such a subduction rupture event may have involved nucleation and lateral propagation of slip-weakening rupture along an interconnected set of preexisting weaknesses adjacent to density anomalies

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    Operation and performance of the ATLAS semiconductor tracker

    Get PDF
    The semiconductor tracker is a silicon microstrip detector forming part of the inner tracking system of the ATLAS experiment at the LHC. The operation and performance of the semiconductor tracker during the first years of LHC running are described. More than 99% of the detector modules were operational during this period, with an average intrinsic hit efficiency of (99.74±0.04)%. The evolution of the noise occupancy is discussed, and measurements of the Lorentz angle, δ-ray production and energy loss presented. The alignment of the detector is found to be stable at the few-micron level over long periods of time. Radiation damage measurements, which include the evolution of detector leakage currents, are found to be consistent with predictions and are used in the verification of radiation background simulations
    corecore