158 research outputs found

    Predicting global habitat suitability for stony corals on seamounts

    Get PDF
    Aim Globally, species distribution patterns in the deep sea are poorly resolved, with spatial coverage being sparse for most taxa and true absence data missing. Increasing human impacts on deep-sea ecosystems mean that reaching a better understanding of such patterns is becoming more urgent. Cold-water stony corals (Order Scleractinia) form structurally complex habitats (dense thickets or reefs) that can support a diversity of other associated fauna. Despite their widely accepted ecological importance, records of scleractinian corals on seamounts are patchy and simply not available for most of the global ocean. The objective of this paper is to model the global distribution of suitable habitat for stony corals on seamounts. Location Seamounts worldwide. Methods We compiled a database containing all accessible records of scleractinian corals on seamounts. Two modelling approaches developed for presence-only data were used to predict global habitat suitability for seamount scleractinians: maximum entropy modelling (Maxent) and environmental niche factor analysis (ENFA). We generated habitat-suitability maps and used a cross-validation process with a threshold-independent metric to evaluate the performance of the models. Results Both models performed well in cross-validation, although the Maxent method consistently outperformed ENFA. Highly suitable habitat for seamount stony corals was predicted to occur at most modelled depths in the North Atlantic, and in a circumglobal strip in the Southern Hemisphere between 20° and 50° S and shallower than around 1500 m. Seamount summits in most other regions appeared much less likely to provide suitable habitat, except for small near-surface patches. The patterns of habitat suitability largely reflect current biogeographical knowledge. Environmental variables positively associated with high predicted habitat suitability included the aragonite saturation state, and oxygen saturation and concentration. By contrast, low levels of dissolved inorganic carbon, nitrate, phosphate and silicate were associated with high predicted suitability. High correlation among variables made assessing individual drivers difficult. Main conclusions Our models predict environmental conditions likely to play a role in determining large-scale scleractinian coral distributions on seamounts, and provide a baseline scenario on a global scale. These results present a first-order hypothesis that can be tested by further sampling. Given the high vulnerability of cold-water corals to human impacts, such predictions are crucial tools in developing worldwide conservation and management strategies for seamount ecosystems. © 2009 Blackwell Publishing Ltd

    A Catalogue of M51 type Galaxy Associations

    Full text link
    A catalog of 232 apparently interacting galaxy pairs of the M51 class is presented. Catalog members were identified from visual inspection of mult-band images in the IRSA archive. The major findings in the compilation of this catalog are (1) A surprisingly low number of the main galaxies in M51 systems are early type spirals and barred spirals. (2) Over 70% of the main galaxies in M51 systems are 2-armed spirals. (3) Some systems that were classified as M51 types in previous studies are not M51 types as defined in this catalog. There were a number of systems previously classified as M51 systems for which the companion is identified as an HII region within the main galaxy or a foreground star within the Milky Way. (4) It was found that only 18% of the M51 type companions have redshift measurements in the literature. There is a significant need for spectroscopic study of the companions in order to improve the value of the catalog as a sample for studying the effects of M51 type interaction on galaxy dynamics, morphology, and star formation. Further spectroscopy will also help constrain the statistics of possible chance projections between foreground and background galaxies in this catalog. The catalog also contains over 430 additional systems which are classified as "possible M51" systems. The reasons for classifying certain systems as possible M51 systems are discussed.Comment: 19 pages including 6 figures and tables 3-8, Tables 1 and 2 are found at http://www.jorcat.com, Accepted for publication in Astrophysics and Space Scienc

    Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus

    Get PDF
    A rapidly growing body of literature documents the potential negative effects of CO2-driven ocean acidification (OA) on marine organisms. However, nearly all this work has focused on the effects of future conditions on modern populations, neglecting the role of adaptation. Rapid evolution can alter demographic responses to environmental change, ultimately affecting the likelihood of population persistence, but the capacity for adaptation will differ among populations and species. Here, we measure the capacity of the ecologically important purple sea urchin Strongylocentrotus purpuratus to adapt to OA, using a breeding experiment to estimate additive genetic variance for larval size (an important component of fitness) under future high-pCO2/low-pH conditions. Although larvae reared under future conditions were smaller than those reared under present-day conditions, we show that there is also abundant genetic variation for body size under elevated pCO2, indicating that this trait can evolve. The observed heritability of size was 0.40 ± 0.32 (95% CI) under low pCO2, and 0.50 ± 0.30 under high-pCO2 conditions. Accounting for the observed genetic variation in models of future larval size and demographic rates substantially alters projections of performance for this species in the future ocean. Importantly, our model shows that after incorporating the effects of adaptation, the OA-driven decrease in population growth rate is up to 50% smaller, than that predicted by the \u27no-adaptation\u27 scenario. Adults used in the experiment were collected from two sites on the coast of the Northeast Pacific that are characterized by different pH regimes, as measured by autonomous sensors. Comparing results between sites, we also found subtle differences in larval size under high-pCO2 rearing conditions, consistent with local adaptation to carbonate chemistry in the field. These results suggest that spatially varying selection may help to maintain genetic variation necessary for adaptation to future OA. © 2013 John Wiley & Sons Ltd

    Dynamic changes in Sox2 spatio-temporal expression promote the second cell fate decision through <i>Fgf4/Fgfr2</i> signaling in preimplantation mouse embryos

    Get PDF
    Oct4 and Sox2 regulate the expression of target genes such as Nanog, Fgf4, and Utf1, by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerize on adjacent cis regulatory motifs, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In the present study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy. We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of the Fgf4 Sox/Oct motif. Taking into account Sox2 expression levels fluctuate more than Oct4, our finding provides an explanation on how Sox2 controls the segregation of the epiblast and primitive endoderm populations within the inner cell mass of the developing rodent blastocyst. Biochem J 2018 Mar 20;475(6):1075-1089

    The Loci of Evolution: How Predictable is Genetic Evolution?

    Get PDF
    Is genetic evolution predictable? Evolutionary developmental biologists have argued that, at least for morphological traits, the answer is a resounding yes. Most mutations causing morphological variation are expected to reside in the cis-regulatory, rather than the coding, regions of developmental genes. This “cis-regulatory hypothesis” has recently come under attack. In this review, we first describe and critique the arguments that have been proposed in support of the cis-regulatory hypothesis. We then test the empirical support for the cis-regulatory hypothesis with a comprehensive survey of mutations responsible for phenotypic evolution in multicellular organisms. Cis-regulatory mutations currently represent approximately 22% of 331 identified genetic changes although the number of cis-regulatory changes published annually is rapidly increasing. Above the species level, cis-regulatory mutations altering morphology are more common than coding changes. Also, above the species level cis-regulatory mutations predominate for genes not involved in terminal differentiation. These patterns imply that the simple question “Do coding or cis-regulatory mutations cause more phenotypic evolution?” hides more interesting phenomena. Evolution in different kinds of populations and over different durations may result in selection of different kinds of mutations. Predicting the genetic basis of evolution requires a comprehensive synthesis of molecular developmental biology and population genetics

    Quantifying Rates of Evolutionary Adaptation in Response to Ocean Acidification

    Get PDF
    The global acidification of the earth's oceans is predicted to impact biodiversity via physiological effects impacting growth, survival, reproduction, and immunology, leading to changes in species abundances and global distributions. However, the degree to which these changes will play out critically depends on the evolutionary rate at which populations will respond to natural selection imposed by ocean acidification, which remains largely unquantified. Here we measure the potential for an evolutionary response to ocean acidification in larval development rate in two coastal invertebrates using a full-factorial breeding design. We show that the sea urchin species Strongylocentrotus franciscanus has vastly greater levels of phenotypic and genetic variation for larval size in future CO2 conditions compared to the mussel species Mytilus trossulus. Using these measures we demonstrate that S. franciscanus may have faster evolutionary responses within 50 years of the onset of predicted year-2100 CO2 conditions despite having lower population turnover rates. Our comparisons suggest that information on genetic variation, phenotypic variation, and key demographic parameters, may lend valuable insight into relative evolutionary potentials across a large number of species

    Synergistic effects of climate change and local stressors: CO(2) and nutrient-driven change in subtidal rocky habitats

    Get PDF
    Journal compilation © 2009 Blackwell Publishing. Copyright © 2009 John Wiley & Sons, Inc. All Rights ReservedClimate-driven change represents the cumulative effect of global through local-scale conditions, and understanding their manifestation at local scales can empower local management. Change in the dominance of habitats is often the product of local nutrient pollution that occurs at relatively local scales (i.e. catchment scale), a critical scale of management at which global impacts will manifest. We tested whether forecasted global-scale change [elevated carbon dioxide (CO2) and subsequent ocean acidification] and local stressors (elevated nutrients) can combine to accelerate the expansion of filamentous turfs at the expense of calcifying algae (kelp understorey). Our results not only support this model of future change, but also highlight the synergistic effects of future CO2 and nutrient concentrations on the abundance of turfs. These results suggest that global and local stressors need to be assessed in meaningful combinations so that the anticipated effects of climate change do not create the false impression that, however complex, climate change will produce smaller effects than reality. These findings empower local managers because they show that policies of reducing local stressors (e.g. nutrient pollution) can reduce the effects of global stressors not under their governance (e.g. ocean acidification). The connection between research and government policy provides an example whereby knowledge (and decision making) across local through global scales provides solutions to some of the most vexing challenges for attaining social goals of sustainability, biological conservation and economic development
    corecore