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ABSTRACT (150-250 WORDS) 

Fine sediment (here defined as fine sand, silt and clay) is a serious management problem in lowland rivers 

because of alterations to river channels, floodplains and the wider landscape. The multi-scale, complex and 

stochastic nature of sediment production, delivery and transport processes complicates the diagnosis of fine 

sediment sources, pathways and impacts. The hydromorphological assessment framework developed by the 

REFORM project offers a flexible approach to investigate fine sediment pressures. In this study, the framework 

was applied to a lowland river impacted by excess fine sediment (River Frome, Dorset, UK) to investigate likely 

sources and timing of sediment production, the segment-scale capacity of the river to transport sediment, and 

the reach-scale geomorphological response of the river. Land use mapping and agricultural census records 

suggest that intensive cultivation of cereals and high livestock numbers during the second half of the 20th century 

are the probable causes of fine sediment production and that a lack of any significant riparian buffer zone 

facilitates delivery of fine sediment to the river network. Sediment budget modelling indicates that transport 

capacities for gravel are low along the river, which is supported by field observations of compacted gravel/sand 

beds covered with algae. Analysis of historical maps reveals that the river has responded to the increase in fine 

sediment over the last 40-50 years with channel narrowing and an increase in sinuosity, as fine sediment is 

trapped and stabilised by aquatic vegetation in the channel margins. Interactions between hydrodynamic forces, 

sediment supply and vegetation are driving progressive adjustment of the River Frome, and are the key to its 

holistic future management. 
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INTRODUCTION 

Fine sediment is a natural component of rivers and is integral to their geomorphological and ecological 

functioning. However, humans have altered the quantity and quality of fine sediment in rivers (Owens et al. 

2005) and it is now classified as a diffuse pollutant in Europe under the Water Framework Directive (WFD) 

(European Parliament 2000). More fine sediment is entering rivers, particularly lowland rivers in agricultural and 

urban settings, and this sediment is often contaminated with nutrients, heavy metals, organic pesticides and 

other pollutants (Owens et al. 2005). Once in rivers, fine sediment impacts directly on both the geomorphology 

and ecology, and also indirectly through complex interactions between the physical and biological components 

of river systems (Acornley and Sear 1999; Ballantine et al. 2009; Gurnell et al. 2006; Heppell et al. 2009; Jones 

et al. 2012; Sharley et al. 2008). In England, fine sediment is the fifth most common pressure on water bodies 

and is responsible for 12% of failures to reach good ecological status for WFD (Environment Agency 2013). Thus, 

the need to manage fine sediment is clear, but management is difficult and often prohibitively expensive to 

achieve once the sediment is in the river channel (Detzner et al. 2007; Hakstege 2007). Indeed the most 

sustainable solution is to reduce sediment production at source and to decrease connectivity between source 

areas and the river network as part of an integrated sediment risk management approach (Apitz 2012).   

Although the study of erosion and transport of fine sediment has a relatively long history, the assessment of fine 

sediment pressures on rivers is still limited by the complexity and stochasticity of sediment transport processes 

and our ability to resolve its intrinsic spatial and temporal variability (Sear et al. 2010). Approaches such as soil 

erosion monitoring, sediment walkover surveys, sediment fingerprinting and sediment tracing have been 

developed to quantify sediment production, track sediment plumes during storm events, identify sediment 

sources based on sediment biogeochemical properties, and map pathways and quantify sediment flux (Guzmán 

et al. 2013; Walling 2013; Cooper et al. 2014). Whilst these approaches can provide valuable information for an 

assessment of fine sediment pressures, they require specialist knowledge and equipment and can be resource 

and time-intensive, thereby limiting the spatial scope of the studies and the timespans investigated. 

Consequently, an approach is needed that can be applied at a large-scale (i.e. catchment) to identify potential 

sediment sources,  to identify changes over time in sediment production and delivery, and at small-scales (i.e. 

reach) to identify the geomorphological impacts of excess sediment within river systems. 

The purpose of this paper is to demonstrate how a range of freely available datasets can be examined within 

the hierarchical framework proposed by the REFORM project (Gurnell et al. 2015, this volume) to investigate 

fine sediment pressures. The study focuses on a lowland river with a documented fine sediment problem, but 

for which gaps in our understanding remain. The hydromorphological assessment framework is used to fill these 

gaps by (i) identifying possible sediment sources and how they have changed over time at the catchment scale, 

(ii) the extent of riparian vegetation along river margins that could intercept delivery of fine sediment; (iii) by 

quantifying the transport capacity of the river at the segment scale to determine if sediment is likely to remain 

in the channel once it is delivered to it; and (iv) by quantifying geomorphological changes at the reach-scale to 

understand what impacts increased delivery of fine sediment has had on channel dimensions, planform and 

sediment characteristics. The assessment provides the necessary data to develop a conceptual model of the 

evolution of the river system which is used to predict how the system will respond in the future. 

MATERIALS AND METHODS 

THE STUDY CATCHMENT 

The hierarchical framework (Gurnell et al., 2015) was applied to the River Frome in Dorset, southern England 

(Fig 1). The River Frome is a lowland gravel bed river protected under multiple UK and EU statutes for its species-

rich aquatic plant communities and important river and floodplain habitats. Land use in the lowland catchment 

is predominantly agricultural with localised urban development concentrated in the middle and lower 

catchment around two small towns (Dorchester and Wareham). The landscape is characterised by low rolling 



hills composed primarily of Cretaceous chalk in the upper catchment and Cainozoic marine deposits in the lower 

coastal plain. The chalk geology supports an unconfined aquifer in the upper and middle catchment which 

generates baseflow-dominated flows in the River Frome and its tributaries, driving a stable to superstable flow 

regime. 

Lowland chalk rivers are particularly sensitive to increases in fine sediment loads. Their ecological communities 

are reliant on low turbidity levels and clean gravel beds, and their baseflow-dominated flow regimes and high 

width:depth ratio channels produce gentle flows with limited capacity to flush sediment once it deposits. For 

these systems, fine sediment is defined broadly and based on its functional impact on the ecology and hydrology 

of the river. It includes clay, silt and sand-sized particles, all of which are small enough to ingress into the channel 

bed and affect bed sediment size distributions, subsurface water flows and the benthic community. Increased 

fine sediment deposition within the River Frome has been noted over recent decades (Collins and Walling 2007a; 

Walling and Amos 1999), but little direct evidence exists to assess temporal trends in sediment loads or their 

impacts on channel plan or cross-sectional form. 

The catchment and channel network were delineated into a hierarchy of spatial units following the REFORM 

framework (Gurnell et al., 2015). This initial step creates spatial units that are internally consistent in terms of 

their topography, geology, and land use (landscape units); valley setting and gradient (segment); and channel 

planform and longitudinal continuity (reach) which facilitates a process-based characterisation of 

hydromorphology at each scale. The 459 km2 catchment was delineated into 3 landscape units, and the 66 km-

long River Frome into 6 segments and 17 reaches (Fig 1). A combination of sediment budgeting and temporal 

analyses of land cover, agricultural production, and channel planform were used to investigate fine sediment 

production at the catchment scale, sediment delivery at the landscape unit scale, sediment transport at the 

segment scale, and the consequences of these sediment dynamics for channel planform at the reach scale. 

SEDIMENT PRODUCTION - LAND COVER / USE 

Changes in land cover and land use over time were investigated through the analysis of historical land cover 

maps, recent spatial land cover datasets and agricultural census records.  

Scanned maps from the First Land Utilisation Survey of Britain (1:63,360 scale, 2 maps dated 1936 and 1943) 

were georeferenced in ArcGIS and land cover was classified using maximum likelihood classification. Recent 

changes in land cover were examined using the UK Countryside Survey digital land cover maps for 1990, 2000 

and 2007 (1-km resolution) with thematic classes aggregated to match the first level of the Corine land cover 

dataset, a pan-European dataset recommend by REFORM (Gurnell et al., 2015). Changes in the area cover of 

land classes were investigated at the catchment scale as were the extent of riparian vegetation along the margins 

of the river network. 

Agricultural statistics were obtained for the county of Dorset from the UK Department of Environment and Rural 

Affairs (DEFRA). To explore changes in land use that could impact soil and runoff production, the June agricultural 

census was used to track changes in the amount of arable land, permanent grasslands and rough pastures, as 

well as the number of livestock. Estimates are only available at the county scale, and are used to infer changes 

within the Frome catchment. This is a reasonable approach as the Frome catchment comprises a substantial 

portion of the county (18%) and elevation, land cover and land use are similar within the catchment and in the 

rest of Dorset. 

SEDIMENT DELIVERY AND TRANSPORT – SEDIMENT BUDGETING 

Long-term sediment transport monitoring data are not available for the River Frome. Therefore, a sediment 

budget was developed using the Sediment Impact Assessment Method (SIAM) within the 1-D hydraulic 

modelling package HEC-RAS (Little and Jonas, 2010). SIAM generates a simple sediment budget that identifies 

network-scale patterns in sediment accumulation or loss within the channel network. It is a 1-D sediment 

continuity model based on reach-averaged hydraulic and sediment information, and is intended as a screening 



tool to assess the potential impacts of alternative sediment management options on downstream reaches. The 

model represents the River Frome as a single thread with a mixed sand/gravel bed, with river discharge based 

on the monitored flow duration curve, and fine sediment input originating from soil erosion. These 

simplifications were necessary because of a paucity of data to calibrate and validate the model. Consequently, 

the SIAM model is applied in an indicative manner wherein the available data are used to support the estimation 

of broad annual trends in the sediment budget. 

The SIAM model has two components: a 1-D steady-state hydraulics model and a sediment characterisation. The 

hydraulics model was created using a river geometry file based on the stream network represented in the 

current Ordnance Survey map (1:2500 scale) and a mosaic of elevations from the ProfileDTM (10 m resolution) 

and LiDAR surveys. Channel cross sectional profiles were based initially on channel depth estimates from the UK 

Environment Agency’s (EA) River Habitat Surveys, informed by local knowledge of bed configuration, and 

improved where engineering cross-sections were available from the EA. The steady state hydraulic data was 

obtained from 5 river gauging stations in the catchment, and extended to ungauged segments based on an 

empirical relationship between discharge and sub-catchment area for each discharge in the profile. The 

discharge profile was based on the flow duration curve: Q95 (67 days), Q70 (82days), Q50 (135 days), Q10 (65 

days), Q2 (11 days), and Q1 (5 days). Sediment data included bed sediment size information extracted from River 

Habitat Surveys (EA) and Mean Trophic Rank Surveys (Centre for Ecology and Hydrology - CEH) and fine sediment 

input estimates from the Pan-European Soil Erosion Risk Assessment map (PESERA). PESERA is a pan-European 

model that predicts soil loss (t ha-1 yr-1) at 1-km scale. A 500 m buffer around the river network was used to 

estimate annual delivery of fine sediment (t km-1 y-1). Fine sediment derived from soil erosion was represented 

as clay/silt. The Yang sediment transport function was used, and additional sensitivity testing was conducted 

using the Meyer-Peter-Müller and Laursen (Copeland) equations. Model outputs were assessed based on the 

spatial pattern of bed sediment gain and loss in the channel network. No change in sediment storage was defined 

as 0 ± 5% of the min/max of sediment loss/gain for the model run.  

Specific (i.e. unit) stream power was calculated using the median of the annual flood series (Qpmedian based on 

15 minute flows) as ω = �gQS/b,  where � is the density of water (1000 kg m–3), g is acceleration due to gravity 

(9.8m s–2), Q is discharge (in m3 s–1), and S is slope (in m m–1) and b is average channel width. Shear stress was 

estimated as τ = �gRS, where R is the reach-averaged hydraulic radius estimated from reach-averaged channel 

width and depth (EA River Habitat Survey data). 

REACH-SCALE CHANGES 

Channel overlays from historical maps were used to examine changes in channel position, planform and width 

over time. Ordnance Survey (OS) large-scale maps were used throughout, which adopt a standard convention 

of the ‘normal winter level’ to define river channel edges (Harley, 1975). The OS MasterMap Topography layer 

was used to represent the current channel planform (here designated 2013), and large-scale (1:2500) historical 

OS maps were obtained for the years 1889 and 1960/1973 (date varies by reach). Some of the main channel in 

reach 1 was not included in this analysis because it was too narrow at one of the time points; at 1:2500 scale, 

OS maps only represent a river with two banklines if it is wider than 2 m. Positional accuracy of the Mastermap 

topography series is ±1.0 m in urban areas and ±2.5 m in rural areas, the second of which is comparable to the 

historical 1:2500 maps which have an absolute accuracy of ±2.8 m (Gurnell et al. 2003).  

The historical maps were georeferenced to the current map in ArcGIS based on common landmarks (Grabowski 

and Gurnell 2014). All major and secondary channels of the main stem of the River Frome were digitised by 

reach for each time point. Channel area and length were quantified by reach and used to calculate reach-

averaged channel width. Networks from different time points were overlaid to quantify the area of channels 

found in both time points (no change), areas that were channel in the first time point but land in the second 

(deposition) and area that was land in the first but channel in the second (erosion).  



RESULTS 

SEDIMENT PRODUCTION - LAND COVER / USE 

The analysis of historical maps and datasets indicates that land cover in the River Frome catchment has changed 

little over the last 70 years (Fig 2). The catchment has historically been and remains dominated by agriculture. 

Agricultural surfaces have consistently covered almost 90% of the catchment area. No substantial change has 

occurred in the cover of forests or built-up (urban/suburban) areas; forest has covered 6-9% and built up areas 

1-2% (though urban centres in the mid and lower catchment have grown in recent decades). The most notable 

change over time is the shift from pasture to arable land through the end of the 20th century. Furthermore, when 

floodplain land cover is investigated at the segment scale, riparian vegetation covers 32%, 35%, 10%, 5%, 8%, 

10% of the floodplain area and the extent of river margins bordered by riparian trees or scrub is 42%, 30%, 27%, 

9%, 18%, 21% in segments 1 to 6, respectively. This illustrates that apart from the headwaters (segments 1 and 

2, Fig 1), riparian vegetation cover is low and very few river margins have any buffer of riparian vegetation that 

might intercept runoff and sediment transported from agricultural land. 

At the county level, total agricultural area has remained unchanged over the past 100 years at approximately 

2000 km2, which encompasses approximately 75% of the area of Dorset (Fig 3a). The area of arable land 

fluctuated in the early 20th century, but increased to account for half of the agricultural area by the 1960s (Fig 

3a). This temporal trend was mirrored by a decrease in the area of low-intensity agriculture (permanent 

grassland and rough pasture). County-level agricultural statistics also provide information on the total area of 

arable land under cultivation for different crop types (Fig 3b). The area of agricultural land under cultivation for 

cereals decreased during the early part of the 20th century, increased during World War II (WWII), and then 

increased dramatically in the late 20th century, first with barley production and then wheat. The area under root 

crops used for fodder decreased to zero over the first half of the 20th century, whereas potato cultivation was 

historically limited, but briefly peaked during WWII (Fig 3b). The increase in land use dedicated to cereal 

production over the later 20th century paralleled increases in crop yields. County level statistics for crop yields 

are not available, but country-level statistics show that the amount of wheat and barley produced per hectare 

of land increased dramatically from the 1930s (Fig 3d). Crop yields in the Frome catchment would have probably 

seen a similar trend, as the modernisation and intensification of agricultural practices would have been adopted 

over the entire country. The statistical data strongly suggest that the Frome catchment experienced not only an 

increase in the amount of land under tilled agriculture but a substantial intensification of production. 

Finally, livestock numbers have also changed substantially over time in Dorset (Figure 3c). Sheep were the 

dominant livestock in the county in the early 1900s, but their numbers dropped over the first half of the century. 

Cattle numbers increased steadily over the 20th century and total livestock numbers reached a peak in 1995.  

SEDIMENT DELIVERY AND TRANSPORT – SEDIMENT BUDGETING 

The SIAM model predicts a net gain in bed sediment for the majority of the main stem of the River Frome 

(segments 2-6) and a net loss in bed sediment from the tributaries and segment 1. Transport potentials for the 

sand and gravel bed sediment are low in Segments 2-6, and are exceeded by the delivery of sediment from 

upstream segments and tributaries, resulting in a net gain of sediment within the river network. Sensitivity 

testing found a similar spatial pattern in sediment gain/loss regardless of the transport equation that was used, 

although higher sediment transport potentials for both sand and gravel were estimated when the Yang function 

was not applied. 

The low transport capacity of the River Frome illustrated by the SIAM modelling results are unsurprising given 

the low specific stream power and shear stress for most of the length of the River Frome (Fig 4). Specific stream 

power is equal to or below 30 W m-2 at Qpmedian for the entire main stem of the River Frome except for reach 1 

(45 W m-2). Shear stress is approximately 30 N m-2 or less for all reaches except 1 and 4.  



REACH-SCALE CHANGES 

Overlays of the channel margins between different points in time give a good indication of the direction and 

magnitude of adjustment that has occurred. This type of analysis incorporates implicitly any changes that have 

occurred in channel width or length in addition to lateral migration. When the deposited and eroded areas are 

compared, it becomes clear that most reaches have shown a distinct and continuous reduction in channel area 

since 1889 (Fig 5a,b). These trends are likely to be robust, since the Ordnance Survey use a consistent definition 

of the channel boundary (the normal winter flow level), and interpretation of aerial imagery used the same 

definition. Such a definition can be robustly applied to the channels of the Frome, because of their typically 

steep (near-vertical) banks.  

With the exception of several reaches which experienced large (apparently artificial) cut-offs, reach length and 

thus reach sinuosity has increased over time (Fig 5c,d). An increase in sinuosity was especially apparent in the 

second half of the 20th century (Fig 5d). As the number of channels was constant over time and channel lengths 

were stable or increasing, the decrease in channel area has been caused by a reduction in average channel 

widths. While no consistent change in width is detected between 1889 and 1960/75 (Fig 5e), channel narrowing 

is clearly evident over the last 40-50 years (Fig 5f). Out of the 17 reaches, 12 narrowed over this period, 

accounting for 69% of the total length of the main stem of the river. Although width reductions are small, on the 

order of 2 m or less, these translate to a 5-15% reduction in channel width. Over this period, channel widening 

was substantial only in reaches 2 (0.5 m, or 9%, increase in width) and 14 (2.8 m, or 14%, increase in width), and 

minor in the other 3 reaches, representing a 1-3% increase in width. Although the estimated reach-average 

channel narrowing is of a similar magnitude to potential errors in the map sources, the consistency of the 

changes observed along the gives confidence that genuine channel narrowing has occurred.  

DISCUSSION 

In this study, the hierarchical framework for hydromorphological assessment developed by the REFORM project 

was applied to a lowland river flowing through an agricultural catchment with a recognised fine sediment 

problem. The study demonstrates how a process-based framework can be used to develop a fuller picture of 

the problem by investigating each stage of the sediment transfer process: the source and timing of sediment 

production, delivery to and transport within the channel network, and the resulting impacts observed at the 

reach scale.  

SEDIMENT PRODUCTION – LAND COVER/USE 

This study found substantial shifts in agricultural land use practices starting in the middle of the 20th century 

which likely resulted in increased sediment production. The dominant land use in the agricultural catchment 

transitioned from pasture to arable land at this time, and was accompanied by a shift towards the intensive 

cultivation of cereals throughout the latter half of the century. These changes in agricultural land use were a 

result of government policies that promoted agricultural production during and following WWII and market 

forces that dictate crop prices (Angus et al. 2009). Over this period, an increased mechanisation of farming 

practices, improved crop varieties and an increased use of fertilisers dramatically improved yields (Fig. 3d), but 

some of these practices led to unintended soil loss consequences. More powerful tractors pull larger equipment, 

which are more efficiently and economically used on larger fields. The amalgamation of small fields into larger 

increases the length over which soil erosion operates and therefore intensifies rill and gully erosion (Leys et al. 

2010). Heavier equipment is responsible for increased soil compaction on tramlines and more powerful tractors 

can plough against hillslope contours, aligning crop rows parallel to slope, both of which can increase surface 

run-off and intensify erosion (Deasy et al. 2009; Stevens and Quinton 2008).  Furthermore, the relative lack of a 

zone of riparian vegetation bordering the river channel, means that connectivity between agricultural areas and 

the river network is high along the majority of the length of the main Frome.    



The shift to intensive cereal cultivation in the latter 20th century is the most probable origin of recent fine 

sediment delivery to the River Frome. Soil erosion rates differ by crop types because of variations in the cover 

of above ground biomass, soil binding by roots, planting and harvesting techniques, and the timing of field 

operations in relation to precipitation patterns. Accordingly, UK government guidelines recommend that certain 

crops should not be grown on sites with high susceptibility to erosion, including autumn sown winter cereals, 

potatoes, sugar beets, field vegetables and forage maize (Boardman et al. 2009; Defra 2005). Whilst potatoes 

and maize have been or currently are cultivated in the Frome catchment, the predominance of cereals is readily 

apparent in the latter 20th century, a period which also corresponds with a shift in the timing of cereal sowing 

from spring to autumn. This change in practices means that fields are bare in autumn, at a time when rainfall 

intensity is greatest in this part of England (e.g. Gurnell and Midgley, 1993). Chambers et al. (2000) found that 

over 80% of erosion events in a large-scale field study in England and Wales occurred on land cropped with 

winter cereals.  

Livestock production has also intensified and diversified over the second half of the 20th century and has likely 

contributed to increase fine sediment loads in the River Frome. Total livestock numbers increased steadily 

following WWII and changed from sheep- to cattle-dominated (Fig. 3c). Grazing influences vegetation cover and 

biomass, soil properties, and surface hydrology, which can increase the production and delivery of fine sediment 

to the channel (Bilotta et al. 2008; Bilotta et al. 2010; Trimble 1994; Trimble and Mendel 1995). Cattle accessing 

the river for drinking water (i.e. cow ramps) have been identified as a major source of bank degradation (i.e. 

poached river banks) and thus fine sediment input to rivers. The recent increase in the number of pigs may also 

be associated with an increase in outdoor breeding, which releases significant quantities of fine sediment (Evans 

2004).  

In combination, these land use changes suggest a trend of increased fine sediment production from the 1940s 

through to the end of the 20th century. While sediment fingerprinting studies have previously identified 

agricultural soils as the source of fine sediment in several lowland chalk rivers, they have only been able to 

estimate the relative net contributions (Collins and Walling 2007b; Walling and Amos 1999). For example a study 

on the nearby Pang/Lambourn catchment found that for fine sediment stored in the channel bed 19-35% 

originated from pastures and 31-55% from cultivated land (Collins and Walling 2007b). The present study 

corroborates this sediment fingerprinting research and in addition has identified the likely timing and 

agricultural land uses responsible for the increased delivery of fine sediment to the channel. 

SEDIMENT DELIVERY AND TRANSPORT 

The River Frome does not have long-term monitoring records of sediment transport, so a sediment budget 

modelling approach was used to estimate how the delivery of sediment from the catchment and upstream 

reaches would affect the spatial pattern of sediment gain/loss in the river network. The SIAM model estimated 

that most of the main stem of the river would gain bed sediment over a typical year. Low sediment transport 

capacities for gravel-sized sediment suggest that the river is unable to mobilise its gravel bed and that 

aggradation in reaches is primarily caused by the net deposition of sand delivered from upstream sources. Whilst 

the model does not predict deposition on silt and clay particles, it supports the argument that fine sediment, 

once it deposits and ingresses into the gravel-bed, is unlikely to be remobilised.  

Although the SIAM model could be improved with additional calibration data, the results are consistent with 

research on critical erosion thresholds for non-cohesive sediment and field observations. Studies have suggested 

a specific stream power threshold of 30-35 W m-2 for gravel-bed rivers, above which erosional processes become 

dominate (Brookes 1987; Orr et al 2008; Bizzi and Lerner 2013). Specific stream power is equal to or below 30 

W m-2 at Qpmedian for all reaches except reach 1. Experimental work on incipient motion of uniform non-cohesive 

sediment has found that coarse sand (d50 = 2 mm) requires a critical shear stress of approximately 1 N m-2 while 

coarse gravel (d50 = 32 mm) requires a critical shear stress of approximately 30 N m-2 (Julien 2010). Reach-average 

shear stress is at or below 30 N m-2 for all reaches of the Frome except for 1 and 4. Consequently the gravel bed 



is unlikely to be mobilised regularly in most of the River Frome. Sand may be mobilised, as shear stresses are 

greater than 1 N m-2 in all reaches, but once sand deposits in areas or at times of low flow and infiltrates into 

the gravel bed, it is unlikely to be remobilised. This conclusion is supported by field observations in many reaches 

of compacted gravels covered in algae, the smothering of gravels by silt and sand or accumulation of silt and 

sand within the margins of the river bed. 

Finally, recall that the River Frome was modelled as a single-thread system based on the dimensions of the main 

channel, but it is actually anabranching in many reaches particularly in the middle and lower catchment. 

Therefore, flow velocities and unit stream powers would be substantially lower than estimated in the model 

because the total width of the multiple channels would be significantly wider than the single main channel, 

thereby reducing sediment transport potentials even further. Consequently, without the routine reworking of 

the gravel bed, the River Frome will continue to suffer from problems of persistent fine sediment storage. 

REACH-SCALE CHANGES 

The temporal analysis of channel position revealed that both channel area and width decreased along the 

majority of the River Frome over the last 40-50 years (Fig. 5). The channel narrowed by 5-15% along 69% of its 

length over this time period. This is in contrast to the earlier time period (1889-1960/75), when there was no 

consistent trend in channel area or width changes. Whilst the coarse temporal resolution of the analysis does 

not allow for precise estimation of the timing of narrowing, the results clearly indicate a correlation between 

channel narrowing and the adoption of agricultural practices that are known to increase soil loss in the second 

half of the 20th century. This link is supported by studies that have documented the deposition and stabilisation 

of fine sediment along channel margins that could produce channel narrowing. 

Field studies of fine sediment transport and storage in chalk rivers have previously observed extensive fine 

sediment deposition within the channel, and particularly within stands of aquatic macrophytes (e.g. Cotton et 

al., 2006). The frequently high width:depth ratio of chalk rivers, their historically low suspended sediment 

concentrations, baseflow-dominated flow regime and the lack of significant riparian vegetation cover to shade 

the channel has created the ideal conditions for the establishment of aquatic macrophytes. Aquatic macrophytes 

interact with the flow of water and sediment, creating low flow velocity, low turbulence areas within the channel 

that promote sediment deposition and hinder the erosion of sediment deposits. Sediment storage has been 

noted in both submerged and emergent morphotypes, including the submerged Ranunculus penicillatus ssp. 

pseudofluitans and the emergent Sparganium erectum. Gurnell et al. (2006) found average depths of fine 

sediment deposited across the surface of the gravel bed at study sites in reaches 5 and 6 to vary greatly through 

time but with minimum and maximum reach average values of 0.2 cm and 4.0 cm. Surface accumulations were 

particularly high within emergent macrophyte stands where average depths of fine sediment varied from 3 to 4 

cm in early spring to over 8 cm in August. Heppell et al. (2009) report that fine sediment storage varied between 

11.6 and 66.8 kg m-2 at a site in Reach 4 in monthly measurements over a two year period. In this reach, the 

majority of this sediment was found within submerged macrophytes growing in the middle of the channel, 

particularly within patches of Ranunculus sp. The emergent macrophyte, Sparganium erectum, is also found 

widely along the River Frome. It has been shown from analysis of a national data set, that to achieve up to a 25% 

cover of Sparganium erectum, unit stream power at Qpmedian needs to fall below 60 W/m2: above this value the 

species may be present but its abundance is lower and when stream power exceeds 100 W.m2, its persistence 

at a particular location is probably too short for significant sediment accumulation (Gurnell et al., 2013). S. 

erectum tends to grow in dense stands, particularly towards the edges of the river bed, where it is particularly 

effective at trapping and retaining fine sediment and then stabilising it by sending rhizomes and roots into the 

freshly-accumulated sediments (Liffen et al., 2013). This process of sediment aggradation and stabilisation 

initiates the development of submerged shelves and emergent berms of vegetated fine sediment (Gurnell et al., 

2013), which can be colonised by other plant species to evolve into benches and extensions of the bank profile 

(Gurnell 2014), so contributing to channel narrowing.  



SENSITIVITY AND FUTURE TRAJECTORIES 

Geomorphological change occurs slowly on the River Frome, reflecting the fact that it is a very low energy, 

baseflow-dominated river bounded by banks of erosion-resistant cohesive sediment. Nonetheless, the river 

appears to be responding progressively to the fine sediment that is being delivered to it as a result of human 

activities within the catchment. There have been no abrupt or dramatic adjustments to channel position or 

planform type, and river channel change is observed as a reduction in channel width, increased sinuosity and a 

fining of the bed sediment. The rate of change in channel area and width, and thus the amount of fine sediment 

retained, varies by reach (Fig 5), but it is unclear whether this is related to differences in the input of fine 

sediment, different lags in sediment delivery-transfer or different responses to the same delivery-transfer rates. 

So far, the river has been surprisingly resilient to the process changes to which it has been subject, at least in 

terms of its limited lateral dynamics and planform adjustment. 

While it is difficult to identify a period in the recent past in Britain that is not significantly impacted by humans, 

we can hypothesise that prior to agriculture the gravel-bed River Frome would have been either single-thread 

sinuous / meandering or low energy anabranching and would have been flowing through a mosaic of wetland 

and wet woodland habitats (Fig 6a). Conversion of floodplains for pasture and arable land would have resulted 

in the loss of the natural floodplain vegetation and a reduction in woody riparian vegetation cover. Engineering 

of channels and floodplains from the Medieval period onwards saw the proliferation of weirs within the Frome 

river network to support water mills, the installation of sluice gates to control the flow of water, and the creation 

or modification of side channels to divert flow from the floodplain to the channel network, into water meadows 

and towards water mills (Lewin 2010). As was common in lowland rivers, the main channel would have also been 

straightened, widened and possibly deepened for a variety of purposes (e.g. land drainage, flood protection, 

etc.).  

More recently, channels have narrowed and become more sinuous as aquatic plants trap and stabilise sediment 

in the margins, producing landforms (e.g. bars and benches) that aggrade over time to eventually fuse with the 

floodplain (Fig 6a,b). Under current land management and thus sustained fine sediment inputs, this process 

could be expected to continue until: (i) fine sediment loads decrease, (ii) the narrowing of the channel increases 

flow velocities sufficiently to reduce the establishment and survival of aquatic plants, or (iii) the growth of woody 

riparian vegetation shades out aquatic plants (however this would be accompanied by new wood-induced 

geomorphic processes) (Fig 6a). It is this interplay between fine sediment supply, river flows, and aquatic and 

riparian vegetation that is the key to understanding how the system has evolved over time and will respond to 

future management and climate change.  

The preferred management option from a geomorphological perspective is to allow channel narrowing to 

continue until an equilibrium is reached, combined with a relaxation of riparian vegetation management. The 

fencing off of riparian areas from grazing will allow the re-establishment of herbaceous and woody vegetation. 

This increase in vegetation cover will help to reduce fine sediment delivery to the river from overland flow and 

promote the delivery of wood to the river channel which has been shown to induce geomorphic change. The 

narrowing of the channel will re-establish lateral connectivity in the system, by raising water levels, increase the 

frequency and extent of flooding and the deposition of fines on the floodplain, which is where fine sediment 

deposits in a natural system. Collaborative engagement with farmers and riparian land owners can minimise the 

potential negative impacts of these geomorphological changes by ensuring the protection of infrastructure and 

the promotion of flood tolerant agricultural land uses. 

CONCLUSIONS 

This study has demonstrated how a hierarchical framework for hydromorphological assessment can be used to 

develop a fuller understanding of pressures and their impacts on the river. The process-based approach has 

enabled us to identify the likely causes of increased sediment production in the river Frome catchment, to 

determine that transport capacities are too low to mobilise its gravel bed, and that this has resulted in changes 



to channel width and sinuosity through an interaction with aquatic vegetation. The flexible nature of the 

framework allows the assessment to be developed further as additional data becomes available to help, for 

example, constrain the timing of increase sediment production or to elucidate the pathways, flux and temporal 

dynamics of sediment delivery to and within the channel 
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Figure 1 – The River Frome catchment is delineated into 3 landscape units based on elevation, geology and land 

cover/use (L1 to L3), 6 segments based on valley setting and major tributary confluences (S1 to S6) and 17 

reaches based on planform and longitudinal discontinuity (e.g.  major weirs – indicated as open rectangles).  

 

 

 

 

Figure 2 – Change in land cover based on the First Land Utilisation Survey (1940) and UK Countryside Surveys 

(1990, 2000, 2007)  

 



Figure 3  Agricultural land use for the county of Dorset over the last century by (a) area of land under different 

land use types, (b) area of arable land under different crop types, (c) livestock numbers for cattle, sheep and 

pigs. (d) Area of arable land cultivated and yields for wheat for England and Wales. 

 

 



 

Figure 4  Average specific stream power and shear stress for the 17 reaches of the River Frome 

 

 

 

Figure 5  Changes in channel (a,b) area, (c,d) length and (e,f) width for the River Frome by reach for the periods 

(a,c,e) 1889-1960/75 and (b,d,f) 1960/75-2013.  

 

 



  



Figure 6. (a) Conceptual diagrams of the changes in channel form and floodplain and aquatic vegetation over 

time in cross-section (top) and plan (bottom) views. The “past” scenario represents a time period prior to 

intensive agriculture. The “future” scenario assumes current management practices plus a relaxation of riparian 

vegetation maintenance/grazing.  (b) A short section of the River Frome within reach 6 showing narrowing, 

increasing sinuosity  and landform development within the channel, which was probably mainly initiated by the 

growth of Sparganium erectum at the edges of the river bed. 

 

 

 

 


