103 research outputs found

    GeneCards Version 3: the human gene integrator

    Get PDF
    GeneCards (www.genecards.org) is a comprehensive, authoritative compendium of annotative information about human genes, widely used for nearly 15 years. Its gene-centric content is automatically mined and integrated from over 80 digital sources, resulting in a web-based deep-linked card for each of >73 000 human gene entries, encompassing the following categories: protein coding, pseudogene, RNA gene, genetic locus, cluster and uncategorized. We now introduce GeneCards Version 3, featuring a speedy and sophisticated search engine and a revamped, technologically enabling infrastructure, catering to the expanding needs of biomedical researchers. A key focus is on gene-set analyses, which leverage GeneCards’ unique wealth of combinatorial annotations. These include the GeneALaCart batch query facility, which tabulates user-selected annotations for multiple genes and GeneDecks, which identifies similar genes with shared annotations, and finds set-shared annotations by descriptor enrichment analysis. Such set-centric features address a host of applications, including microarray data analysis, cross-database annotation mapping and gene-disorder associations for drug targeting. We highlight the new Version 3 database architecture, its multi-faceted search engine, and its semi-automated quality assurance system. Data enhancements include an expanded visualization of gene expression patterns in normal and cancer tissues, an integrated alternative splicing pattern display, and augmented multi-source SNPs and pathways sections. GeneCards now provides direct links to gene-related research reagents such as antibodies, recombinant proteins, DNA clones and inhibitory RNAs and features gene-related drugs and compounds lists. We also portray the GeneCards Inferred Functionality Score annotation landscape tool for scoring a gene’s functional information status. Finally, we delineate examples of applications and collaborations that have benefited from the GeneCards suite

    A portable near infrared spectroscopy system for bedside monitoring of newborn brain

    Get PDF
    BACKGROUND: Newborns with critical health conditions are monitored in neonatal intensive care units (NICU). In NICU, one of the most important problems that they face is the risk of brain injury. There is a need for continuous monitoring of newborn's brain function to prevent any potential brain injury. This type of monitoring should not interfere with intensive care of the newborn. Therefore, it should be non-invasive and portable. METHODS: In this paper, a low-cost, battery operated, dual wavelength, continuous wave near infrared spectroscopy system for continuous bedside hemodynamic monitoring of neonatal brain is presented. The system has been designed to optimize SNR by optimizing the wavelength-multiplexing parameters with special emphasis on safety issues concerning burn injuries. SNR improvement by utilizing the entire dynamic range has been satisfied with modifications in analog circuitry. RESULTS AND CONCLUSION: As a result, a shot-limited SNR of 67 dB has been achieved for 10 Hz temporal resolution. The system can operate more than 30 hours without recharging when an off-the-shelf 1850 mAh-7.2 V battery is used. Laboratory tests with optical phantoms and preliminary data recorded in NICU demonstrate the potential of the system as a reliable clinical tool to be employed in the bedside regional monitoring of newborn brain metabolism under intensive care

    GIFtS: annotation landscape analysis with GeneCards

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene annotation is a pivotal component in computational genomics, encompassing prediction of gene function, expression analysis, and sequence scrutiny. Hence, quantitative measures of the annotation landscape constitute a pertinent bioinformatics tool. GeneCards<sup>® </sup>is a gene-centric compendium of rich annotative information for over 50,000 human gene entries, building upon 68 data sources, including Gene Ontology (GO), pathways, interactions, phenotypes, publications and many more.</p> <p>Results</p> <p>We present the GeneCards Inferred Functionality Score (GIFtS) which allows a quantitative assessment of a gene's annotation status, by exploiting the unique wealth and diversity of GeneCards information. The GIFtS tool, linked from the GeneCards home page, facilitates browsing the human genome by searching for the annotation level of a specified gene, retrieving a list of genes within a specified range of GIFtS value, obtaining random genes with a specific GIFtS value, and experimenting with the GIFtS weighting algorithm for a variety of annotation categories. The bimodal shape of the GIFtS distribution suggests a division of the human gene repertoire into two main groups: the high-GIFtS peak consists almost entirely of protein-coding genes; the low-GIFtS peak consists of genes from all of the categories. Cluster analysis of GIFtS annotation vectors provides the classification of gene groups by detailed positioning in the annotation arena. GIFtS also provide measures which enable the evaluation of the databases that serve as GeneCards sources. An inverse correlation is found (for GIFtS>25) between the number of genes annotated by each source, and the average GIFtS value of genes associated with that source. Three typical source prototypes are revealed by their GIFtS distribution: genome-wide sources, sources comprising mainly highly annotated genes, and sources comprising mainly poorly annotated genes. The degree of accumulated knowledge for a given gene measured by GIFtS was correlated (for GIFtS>30) with the number of publications for a gene, and with the seniority of this entry in the HGNC database.</p> <p>Conclusion</p> <p>GIFtS can be a valuable tool for computational procedures which analyze lists of large set of genes resulting from wet-lab or computational research. GIFtS may also assist the scientific community with identification of groups of uncharacterized genes for diverse applications, such as delineation of novel functions and charting unexplored areas of the human genome.</p

    NMR hyperpolarization techniques of gases

    Get PDF
    Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4–8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science

    Matrix Reordering Methods for Table and Network Visualization

    Get PDF
    International audienceThis survey provides a description of algorithms to reorder visual matrices of tabular data and adjacency matrix of networks. The goal of this survey is to provide a comprehensive list of reordering algorithms published in different fields such as statistics, bioinformatics, or graph theory. While several of these algorithms are described in publications and others are available in software libraries and programs, there is little awareness of what is done across all fields. Our survey aims at describing these reordering algorithms in a unified manner to enable a wide audience to understand their differences and subtleties. We organize this corpus in a consistent manner, independently of the application or research field. We also provide practical guidance on how to select appropriate algorithms depending on the structure and size of the matrix to reorder, and point to implementations when available

    Applications of Microwaves in Medicine

    No full text
    Advances and updates in medical applications utilizing microwave techniques and technologies are reviewed in this paper. The article aims to provide an overview of enablers for microwave medical applications and their recent progress. The emphasis focuses on the applications of microwaves, in the following order, for 1) signal and data communication for implants and wearables through the human body, 2) electromagnetic energy transfer through tissues, 3) noninvasive, remote or in situ physical and biochemical sensing, and 4) therapeutic purposes by changing tissue properties with controlled thermal effects. For signal and data communication and wireless power transfer, implant and wearable applications are discussed in the categories of pacemakers, endoscopic capsules, brain interfaces, intraocular, cardiac and intracranial pressure sensors, neurostimulators, endoluminal implants, artificial retina, smart lenses, and cochlear implants. For noninvasive sensing, remote vital sign radar, biological cell probing, magnetic resonance and microwave imaging, biochemical, blood glucose, hydration and biomarker sensing applications are introduced. For therapeutic uses, the developments of microwave ablation, balloon angioplasty, and hyperthermia applications are reviewed. The scopes of this article mainly concentrate on the research and development efforts in the past 20 years. Recent review articles on specific topics are cited with accomplishment highlights and trends deliberated. At the end of this article, a brief history of the IEEE Microwave Theory and Techniques Society (MTT-S) Biological Effects and Medical Applications committee and the contributions by its members to the promotion and advancement of microwave technologies in medical fields are chronicled
    • …
    corecore