551 research outputs found

    Simple models of the chemical field around swimming plankton

    Get PDF
    Background. Cervical cancer is the fourth most common cancer in women, and we recently reported human leukocyte antigen (HLA) alleles showing strong associations with cervical neoplasia risk and protection. HLA ligands are recognized by killer immunoglobulin-like receptors (KIRs) expressed on a range of immune cell subsets, governing their proinflammatory activity. We hypothesized that the inheritance of particular HLA-KIR combinations would increase cervical neoplasia risk. Methods. Here, we used HLA and KIR dosages imputed from single-nucleotide polymorphism genotype data from 2143 cervical neoplasia cases and 13 858 healthy controls of European decent. Results. The following 4 novel HLA alleles were identified in association with cervical neoplasia, owing to their linkage disequilibrium with known cervical neoplasia-associated HLA-DRB1 alleles: HLA-DRB3*9901 (odds ratio [OR], 1.24; P = 2.49 × 10−9), HLA-DRB5*0101 (OR, 1.29; P = 2.26 × 10−8), HLA-DRB5*9901 (OR, 0.77; P = 1.90 × 10−9), and HLA-DRB3*0301 (OR, 0.63; P = 4.06 × 10−5). We also found that homozygosity of HLA-C1 group alleles is a protective factor for human papillomavirus type 16 (HPV16)-related cervical neoplasia (C1/C1; OR, 0.79; P = .005). This protective association was restricted to carriers of either KIR2DL2 (OR, 0.67; P = .00045) or KIR2DS2 (OR, 0.69; P = .0006). Conclusions. Our findings suggest that HLA-C1 group alleles play a role in protecting against HPV16-related cervical neoplasia, mainly through a KIR-mediated mechanism

    Blood-Brain Barrier Permeability of Normal Appearing White Matter in Relapsing-Remitting Multiple Sclerosis

    Get PDF
    BACKGROUND: Multiple sclerosis (MS) affects the integrity of the blood-brain barrier (BBB). Contrast-enhanced T1 weighted magnetic resonance imaging (MRI) is widely used to characterize location and extent of BBB disruptions in focal MS lesions. We employed quantitative T1 measurements before and after the intravenous injection of a paramagnetic contrast agent to assess BBB permeability in the normal appearing white matter (NAWM) in patients with relapsing-remitting MS (RR-MS). METHODOLOGY/PRINCIPAL FINDINGS: Fifty-nine patients (38 females) with RR-MS undergoing immunomodulatory treatment and nine healthy controls (4 females) underwent quantitative T1 measurements at 3 tesla before and after injection of a paramagnetic contrast agent (0.2 mmol/kg Gd-DTPA). Mean T1 values were calculated for NAWM in patients and total cerebral white matter in healthy subjects for the T1 measurements before and after injection of Gd-DTPA. The pre-injection baseline T1 of NAWM (945±55 [SD] ms) was prolonged in RR-MS relative to healthy controls (903±23 ms, p = 0.028). Gd-DTPA injection shortened T1 to a similar extent in both groups. Mean T1 of NAWM was 866±47 ms in the NAWM of RR-MS patients and 824±13 ms in the white matter of healthy controls. The regional variability of T1 values expressed as the coefficient of variation (CV) was comparable between the two groups at baseline, but not after injection of the contrast agent. After intravenous Gd-DTPA injection, T1 values in NAWM were more variable in RR-MS patients (CV = 0.198±0.046) compared to cerebral white matter of healthy controls (CV = 0.166±0.018, p = 0.046). CONCLUSIONS/SIGNIFICANCE: We found no evidence of a global BBB disruption within the NAWM of RR-MS patients undergoing immunomodulatory treatment. However, the increased variation of T1 values in NAWM after intravenous Gd-DTPA injection points to an increased regional inhomogeneity of BBB function in NAWM in relapsing-remitting MS

    Methods for specifying the target difference in a randomised controlled trial : the Difference ELicitation in TriAls (DELTA) systematic review

    Get PDF
    Peer reviewedPublisher PD

    Detection of transgene in early developmental stage by GFP monitoring enhances the efficiency of genetic transformation of pepper

    Get PDF
    In order to establish a reliable and highly efficient method for genetic transformation of pepper, a monitoring system featuring GFP (green fluorescent protein) as a report marker was applied to Agrobacterium-mediated transformation. A callus-induced transformation (CIT) system was used to transform the GFP gene. GFP expression was observed in all tissues of T0, T1 and T2 peppers, constituting the first instance in which the whole pepper plant has exhibited GFP fluorescence. A total of 38 T0 peppers were obtained from 4,200 explants. The transformation rate ranged from 0.47 to 1.83% depending on the genotype, which was higher than that obtained by CIT without the GFP monitoring system. This technique could enhance selection power by monitoring GFP expression at the early stage of callus in vitro. The detection of GFP expression in the callus led to successful identification of the shoot that contained the transgene. Thus, this technique saved lots of time and money for conducting the genetic transformation process of pepper. In addition, a co-transformation technique was applied to the target transgene, CaCS (encoding capsaicinoid synthetase of Capsicum) along with GFP. Paprika varieties were transformed by the CaCS::GFP construct, and GFP expression in callus tissues of paprika was monitored to select the right transformant

    Control of substrate access to the active site in methane monooxygenase

    Get PDF
    Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs). Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH–MMOB (hereafter termed H–B) complex. Here we remedy this deficiency by providing a crystal structure of H–B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α[subscript 2]β[subscript 2] interface of α[subscript 2]β[subscript 2]γ[subscript 2] MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.National Institute of General Medical Sciences (U.S.) (Grant GM 32114

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Axons Amplify Somatic Incomplete Spikes into Uniform Amplitudes in Mouse Cortical Pyramidal Neurons

    Get PDF
    BACKGROUND: Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels. CONCLUSION/SIGNIFICANCE: An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues

    An epidemiological study of respiratory syncytial virus associated hospitalizations in Denmark

    Get PDF
    Respiratory syncytial virus (RSV) is the most common viral pathogen that causes lower respiratory tract infections in infants. Studies have implicated severe RSV infections early in life as a risk factor for subsequent development of reactive airway disease. We are conducting a study to validate RSV-associated diagnoses in the Danish National Patient Registry, to assess whether the incidence of severe RSV infection is increasing in Denmark, to identify predisposing and protective factors for RSV-associated hospitalization in Denmark, and to examine the association of severe RSV infection with reactive airway disease. The influence of various biological, social and environmental factors on hospitalization for RSV infection will be studied through several population-based registers, including the Danish National Birth Cohort: 'Better health for mothers and children'. The RSV hospitalization cases will be compared with control individuals selected within the same population groups on a case–control or a cohort basis in order to produce estimates of age-adjusted and sex-adjusted relative risks (odds ratio and relative risk) for hospitalization associated with various risk factors. Using register linkage and unique registration of exposures collected through interviews and blood samples from the Danish National Birth Cohort, we will be able to resolve the issues referred to above in a very large sample of Danish children
    corecore