95 research outputs found

    Current antimicrobial use in farm animals in the Republic of Ireland

    Get PDF
    peer-reviewedAbstract Antimicrobial resistance has been recognised as one of the most difficult challenges facing human and animal health in recent decades. The surveillance of antimicrobial use in animal health plays a major role in dealing with the growing issue of resistance. This paper reviews current data available on antimicrobial use in farmed animals in the Republic of Ireland, including each of the major livestock production sectors; pigs, poultry, dairy, beef and sheep. A systematic literature search was conducted to identify relevant published literature, and ongoing research was identified through the network of authors and searches of each of the research databases of the main agriculture funding bodies in Ireland. The varying quantities and quality of data available across each livestock sector underlines the need for harmonisation of data collection methods. This review highlights the progress that has been made regarding data collection in the intensive production sectors such as pigs and poultry, however, it is clear there are significant knowledge gaps in less intensive industries such as dairy, beef and sheep. To comply with European regulations an antimicrobial data collection system is due to be developed for all food-producing animals in the future, however in the short-term surveillance studies have allowed us to build a picture of current use within the Republic of Ireland. Further studies will allow us to fill current knowledge gaps and build a more comprehensive overview of antimicrobial use in farm animals in Ireland

    Spectral characterization of a blue light-emitting micro-LED platform on skin-associated microbial chromophores

    Get PDF
    The therapeutic application of blue light (380 – 500nm) has garnered considerable attention in recent years as it offers a non-invasive approach for the management of prevalent skin conditions including acne vulgaris and atopic dermatitis. These conditions are often characterised by an imbalance in the microbial communities that colonise our skin, termed the skin microbiome. In conditions including acne vulgaris, blue light is thought to address this imbalance through the selective photoexcitation of microbial species expressing wavelength-specific chromophores, differentially affecting skin commensals and thus altering the relative species composition. However, the abundance and diversity of these chromophores across the skin microbiota remains poorly understood. Similarly, devices utilised for studies are often bulky and poorly characterised which if translated to therapy could result in reduced patient compliance. Here, we present a clinically viable micro-LED illumination platform with peak emission 450 nm (17 nm FWHM) and adjustable irradiance output to a maximum 0.55 ± 0.01 W/cm2, dependent upon the concentration of titanium dioxide nanoparticles applied to an accompanying flexible light extraction substrate. Utilising spectrometry approaches, we characterised the abundance of prospective blue light chromophores across skin commensal bacteria isolated from healthy volunteers. Of the strains surveyed 62.5% exhibited absorption peaks within the blue light spectrum, evidencing expression of carotenoid pigments (18.8%, 420–483 nm; Micrococcus luteus, Kocuria spp.), porphyrins (12.5%, 402–413 nm; Cutibacterium spp.) and potential flavins (31.2%, 420–425 nm; Staphylococcus and Dermacoccus spp.). We also present evidence of the capacity of these species to diminish irradiance output when combined with the micro-LED platform and in turn how exposure to low-dose blue light causes shifts in observed absorbance spectra peaks. Collectively these findings highlight a crucial deficit in understanding how microbial chromophores might shape response to blue light and in turn evidence of a micro-LED illumination platform with potential for clinical applications

    Extreme Fermi surface smearing in a maximally disordered concentrated solid solution

    Get PDF
    We show that the Fermi surface can survive the presence of extreme compositional disorder in the equiatomic alloy Ni0.25Fe0.25Co0.25Cr0.25. Our high-resolution Compton scattering experiments reveal a Fermi surface which is smeared across a significant fraction of the Brillouin zone (up to 40% of 2π/a). The extent of this smearing and its variation on and between different sheets of the Fermi surface have been determined, and estimates of the electron mean free path and residual resistivity have been made by connecting this smearing with the coherence length of the quasiparticle states

    The One with the Feminist Critique: Revisiting Millennial Postfeminism with Friends

    Get PDF
    In the aftermath of its initial broadcast run, iconic millennial sitcom Friends (NBC, 1994–2004) generated some quality scholarship interrogating its politics of gender. But as a site of analysis, it remains a curious, almost structuring absence from the central canon of the first wave of feminist criticism of postfeminist culture. This absence is curious not only considering the place of Friends at the forefront of millennial popular culture but also in light of its long-term syndication in countries across the world since that time. And it is structuring in the sense that Friends was the stage on which many of the familiar tropes of postfeminism interrogated across the body of work on it appear in retrospect to have been tried and tested. This article aims to contribute toward redressing this absence through interrogation and contextualization of the series’ negotiation of a range of structuring tropes of postfeminist media discourse, and it argues for Friends as an unacknowledged ur-text of millennial postfeminism

    Cognitive dysfunction in naturally occurring canine idiopathic epilepsy

    Get PDF
    Globally, epilepsy is a common serious brain disorder. In addition to seizure activity, epilepsy is associated with cognitive impairments including static cognitive impairments present at onset, progressive seizure-induced impairments and co-morbid dementia. Epilepsy occurs naturally in domestic dogs but its impact on canine cognition has yet to be studied, despite canine cognitive dysfunction (CCD) recognised as a spontaneous model of dementia. Here we use data from a psychometrically validated tool, the canine cognitive dysfunction rating (CCDR) scale, to compare cognitive dysfunction in dogs diagnosed with idiopathic epilepsy (IE) with controls while accounting for age. An online cross-sectional study resulted in a sample of 4051 dogs, of which n = 286 had been diagnosed with IE. Four factors were significantly associated with a diagnosis of CCD (above the diagnostic cut-off of CCDR ≥50): (i) epilepsy diagnosis: dogs with epilepsy were at higher risk; (ii) age: older dogs were at higher risk; (iii) weight: lighter dogs (kg) were at higher risk; (iv) training history: dogs with more exposure to training activities were at lower risk. Impairments in memory were most common in dogs with IE, but progression of impairments was not observed compared to controls. A significant interaction between epilepsy and age was identified, with IE dogs exhibiting a higher risk of CCD at a young age, while control dogs followed the expected pattern of low-risk throughout middle age, with risk increasing exponentially in geriatric years. Within the IE sub-population, dogs with a history of cluster seizures and high seizure frequency had higher CCDR scores. The age of onset, nature and progression of cognitive impairment in the current IE dogs appear divergent from those classically seen in CCD. Longitudinal monitoring of cognitive function from seizure onset is required to further characterise these impairments

    Genomic consequences of artificial selection during early domestication of a wood fibre crop

    Get PDF
    DATA AVAILABILITY : The genomic data generated and analysed in this study are available online via the Dryad archives under accession https://doi. org/10.5061/dryad.h18931zj6.SUPPLEMENTARY MATERIAL : FIG. S1. Population structure in relation to wild Eucalyptus grandis and other species in section Latoangulatae based on principal component analysis, discriminant analysis of principal components and sparse nonnegative matrix factorization. FIG. S2. Breeding Eucalyptus grandis population structure for all breeding samples, those excluding introgressed, and those excluding infused individuals in relation to the wild progenitor populations based on principal component analysis, sparse nonnegative matrix factorization and discriminant analysis of principal components analyses. FIG. S3. Population differentiation FST estimates among breeding Eucalyptus grandis, wild E. grandis and other species in section Latoangulatae. FIG. S4. Chloroplast (cp) haplotype network based on 24 cp single nucleotide polymorphisms. FIG. S5. Marker-specific Hardy–Weinberg equilibrium signed R values of wild vs breeding populations. FIG. S6. Genomic outliers and linkage disequilibrium plots per chromosome. FIG. S7. Breeding population linkage disequilibrium decay over genomic distance in kb. FIG. S8 Outlier detection by pcadapt scan.TABLE S1. Ancestry assignment of chromosomal segments.TABLE S2. Cluster assignment of samples using discriminant analysis of principal components to identify genetically infused breeding individuals. TABLE S3. Summary statistics of genetic diversity using hierfstat v.0.04-22. TABLE S4. Wilcoxon signed rank test P-values supporting the alternative hypothesis that the mean of the outliers was greater than the mean of the rest of the single nucleotide polymorphisms. TABLE S5. Gene Ontology enrichment analysis for genes in linkage disequilibrium with outlier single nucleotide polymorphisms (SNPs) before excluding organellar-targeting SNPs.TABLE S6. Blastn against the organellar genomes.TABLE S7. Marker statistics of single nucleotide polymorphisms with multigenome targets. Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.From its origins in Australia, Eucalyptus grandis has spread to every continent, except Antarctica, as a wood crop. It has been cultivated and bred for over 100 yr in places such as South Africa. Unlike most annual crops and fruit trees, domestication of E. grandis is still in its infancy, representing a unique opportunity to interrogate the genomic consequences of artificial selection early in the domestication process. To determine how a century of artificial selection has changed the genome of E. grandis, we generated single nucleotide polymorphism genotypes for 1080 individuals from three advanced South African breeding programmes using the EUChip60K chip, and investigated population structure and genome-wide differentiation patterns relative to wild progenitors. Breeding and wild populations appeared genetically distinct. We found genomic evidence of evolutionary processes known to have occurred in other plant domesticates, including interspecific introgression and intraspecific infusion from wild material. Furthermore, we found genomic regions with increased linkage disequilibrium and genetic differentiation, putatively representing early soft sweeps of selection. This is, to our knowledge, the first study of genomic signatures of domestication in a timber species looking beyond the first few generations of cultivation. Our findings highlight the importance of intra- and interspecific hybridization during early domestication.The Department of Science and Innovation and Technology Innovation Agency (DSI/TIA, Strategic Grant-Eucalyptus Genomics Platform), the Forestry Sector Innovation Fund (FSIF Eucalyptus Genome Diversity Atlas grant), National Research Foundation (NRF) of South Africa, the Technology and Human Resources for Industry Programme and by the Forest Molecular Genetics (FMG) Industry Consortium at the University of Pretoria.www.newphytologist.comam2023BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant Patholog

    Selective Reduction of AMPA Currents onto Hippocampal Interneurons Impairs Network Oscillatory Activity

    Get PDF
    Reduction of excitatory currents onto GABAergic interneurons in the forebrain results in impaired spatial working memory and altered oscillatory network patterns in the hippocampus. Whether this phenotype is caused by an alteration in hippocampal interneurons is not known because most studies employed genetic manipulations affecting several brain regions. Here we performed viral injections in genetically modified mice to ablate the GluA4 subunit of the AMPA receptor in the hippocampus (GluA4HC−/− mice), thereby selectively reducing AMPA receptor-mediated currents onto a subgroup of hippocampal interneurons expressing GluA4. This regionally selective manipulation led to a strong spatial working memory deficit while leaving reference memory unaffected. Ripples (125–250 Hz) in the CA1 region of GluA4HC−/− mice had larger amplitude, slower frequency and reduced rate of occurrence. These changes were associated with an increased firing rate of pyramidal cells during ripples. The spatial selectivity of hippocampal pyramidal cells was comparable to that of controls in many respects when assessed during open field exploration and zigzag maze running. However, GluA4 ablation caused altered modulation of firing rate by theta oscillations in both interneurons and pyramidal cells. Moreover, the correlation between the theta firing phase of pyramidal cells and position was weaker in GluA4HC−/− mice. These results establish the involvement of AMPA receptor-mediated currents onto hippocampal interneurons for ripples and theta oscillations, and highlight potential cellular and network alterations that could account for the altered working memory performance

    Satellite and in situ observations for advancing global Earth surface modelling: a review

    Get PDF
    In this paper, we review the use of satellite-based remote sensing in combination with in situ data to inform Earth surface modelling. This involves verification and optimization methods that can handle both random and systematic errors and result in effective model improvement for both surface monitoring and prediction applications. The reasons for diverse remote sensing data and products include (i) their complementary areal and temporal coverage, (ii) their diverse and covariant information content, and (iii) their ability to complement in situ observations, which are often sparse and only locally representative. To improve our understanding of the complex behavior of the Earth system at the surface and sub-surface, we need large volumes of data from high-resolution modelling and remote sensing, since the Earth surface exhibits a high degree of heterogeneity and discontinuities in space and time. The spatial and temporal variability of the biosphere, hydrosphere, cryosphere and anthroposphere calls for an increased use of Earth observation (EO) data attaining volumes previously considered prohibitive. We review data availability and discuss recent examples where satellite remote sensing is used to infer observable surface quantities directly or indirectly, with particular emphasis on key parameters necessary for weather and climate prediction. Coordinated high-resolution remote-sensing and modelling/assimilation capabilities for the Earth surface are required to support an international application-focused effort
    corecore