144 research outputs found

    Accuracy of upper respiratory tract samples to diagnose Mycobacterium tuberculosis: a systematic review and meta-analysis

    Get PDF
    Background: Pulmonary tuberculosis due to Mycobacterium tuberculosis can be challenging to diagnose when sputum samples cannot be obtained, which is especially problematic in children and older people. We systematically appraised the performance characteristics and diagnostic accuracy of upper respiratory tract sampling for diagnosing active pulmonary tuberculosis. Methods: In this systematic review and meta-analysis, we searched MEDLINE, Cinahl, Web of Science, Global Health, and Global Health Archive databases for studies published between database inception and Dec 6, 2022 that reported on the accuracy of upper respiratory tract sampling for tuberculosis diagnosis compared with microbiological testing of sputum or gastric aspirate reference standard. We included studies that evaluated the accuracy of upper respiratory tract sampling (laryngeal swabs, nasopharyngeal aspirate, oral swabs, saliva, mouth wash, nasal swabs, plaque samples, and nasopharyngeal swabs) to be tested for microbiological diagnosis of tuberculous (by culture and nucleic acid amplification tests) compared with a reference standard using either sputum or gastric lavage for a microbiological test. We included cohort, case-control, cross-sectional, and randomised controlled studies that recruited participants from any community or clinical setting. We excluded post-mortem studies. We used a random-effects meta-analysis with a bivariate hierarchical model to estimate pooled sensitivity, specificity, and diagnostics odds ratio (DOR; odds of a positive test with disease relative to without), stratified by sampling method. We assessed bias using QUADAS-2 criteria. This study is registered with PROSPERO (CRD42021262392). Findings: We screened 10 159 titles for inclusion, reviewed 274 full texts, and included 71, comprising 119 test comparisons published between May 13, 1933, and Dec 19, 2022, in the systematic review (53 in the meta-analysis). For laryngeal swabs, pooled sensitivity was 57·8% (95% CI 50·5–65·0), specificity was 93·8% (88·4–96·8), and DOR was 20·7 (11·1–38·8). Nasopharyngeal aspirate sensitivity was 65·2% (52·0–76·4), specificity was 97·9% (96·0–99·0), and DOR was 91·0 (37·8–218·8). Oral swabs sensitivity was 56·7% (44·3–68·2), specificity was 91·3% (CI 81·0–96·3), and DOR was 13·8 (5·6–34·0). Substantial heterogeneity in diagnostic accuracy was found, probably due to differences in reference and index standards. Interpretation: Upper respiratory tract sampling holds promise to expand access to tuberculosis diagnosis. Exploring historical methods using modern microbiological techniques might further increase options for alternative sample types. Prospective studies are needed to optimise accuracy and utility of sampling methods in clinical practice. Funding: UK Medical Research Council, Wellcome, and UK Foreign, Commonwealth and Development Office

    Association of genetic liability to psychotic experiences with neuropsychotic disorders and traits

    Get PDF
    Importance: Psychotic experiences, such as hallucinations and delusions, are reported by approximately 5% to 10% of the general population, although only a small proportion develop psychotic disorders such as schizophrenia. Studying the genetic causes of psychotic experiences in the general population, and its association with the genetic causes of other disorders, may increase the understanding of their pathologic significance. Objectives: To determine whether genetic liability to psychotic experiences is shared with schizophrenia and/or other neuropsychiatric disorders and traits and to identify genetic loci associated with psychotic experiences. Design, Setting and Participants: Analyses of genetic correlation, polygenic risk scores, and copy number variation were performed using data from participants in the UK Biobank from April 1, 2018, to March 20, 2019, to assess whether genetic liability to psychotic experiences is shared with schizophrenia and/or other neuropsychiatric disorders and traits. Genome-wide association studies of psychotic experience phenotypes were conducted to identify novel genetic loci. Participants in the final analyses after exclusions included 6123 individuals reporting any psychotic experience, 2143 individuals reporting distressing psychotic experiences, and 3337 individuals reporting multiple occurrences of psychotic experiences. A total of 121 843 individuals who did not report a psychotic experience formed the comparator group. Individuals with a psychotic disorder were excluded from all analyses. Main Outcomes and Measures: Genetic associations with psychotic experience phenotypes. Results: The study included a total of 127 966 participants (56.0% women and 44.0% men; mean [SD] age, 64.0 [7.6] years). Psychotic experiences were genetically correlated with major depressive disorder, schizophrenia, autism spectrum disorder, and attention-deficit/hyperactivity disorder. Analyses of polygenic risk scores identified associations between psychotic experiences and genetic liability for major depressive disorder, schizophrenia, bipolar disorder, autism spectrum disorder, and attention-deficit/hyperactivity disorder. Individuals reporting psychotic experiences had an increased burden of copy number variations previously associated with schizophrenia (odds ratio [OR], 2.04; 95% CI, 1.39-2.98; P = 2.49 × 10−4) and neurodevelopmental disorders more widely (OR, 1.75; 95% CI, 1.24-2.48; P = 1.41 × 10−3). Genome-wide association studies identified 4 significantly associated loci, including a locus in Ankyrin-3 (ANK3 [GenBank NM_020987]) (OR, 1.16; 95% CI, 1.10-1.23; P = 3.06 × 10−8) with any psychotic experience, and a locus in cannabinoid receptor 2 gene (CNR2 [GenBank NM_001841]) (OR, 0.66; 95% CI, 0.56-0.78; P = 3.78 × 10−8) with distressing psychotic experiences. The genome-wide association study of any psychotic experience had a low single-nucleotide polymorphism–based heritability estimate (h2 = 1.71%; 95% CI, 1.02%-2.40%). Conclusions and Relevance: A large genetic association study of psychotic experiences from the population-based UK Biobank sample found support for a shared genetic liability between psychotic experiences and schizophrenia, major depressive disorder, bipolar disorder, and neurodevelopmental disorders

    X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

    Get PDF
    By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-linked form of PCD causing disruption of early axonemal dynein assembly. We propose that PIH1D3, a protein that emerges as a new player of the cytoplasmic pre-assembly pathway, is part of a complementary conserved R2TP-like HSP90 co-chaperone complex, the loss of which affects assembly of a subset of inner arm dyneins

    An organelle-specific protein landscape identifies novel diseases and molecular mechanisms

    Get PDF
    Contains fulltext : 158967.pdf (publisher's version ) (Open Access)Cellular organelles provide opportunities to relate biological mechanisms to disease. Here we use affinity proteomics, genetics and cell biology to interrogate cilia: poorly understood organelles, where defects cause genetic diseases. Two hundred and seventeen tagged human ciliary proteins create a final landscape of 1,319 proteins, 4,905 interactions and 52 complexes. Reverse tagging, repetition of purifications and statistical analyses, produce a high-resolution network that reveals organelle-specific interactions and complexes not apparent in larger studies, and links vesicle transport, the cytoskeleton, signalling and ubiquitination to ciliary signalling and proteostasis. We observe sub-complexes in exocyst and intraflagellar transport complexes, which we validate biochemically, and by probing structurally predicted, disruptive, genetic variants from ciliary disease patients. The landscape suggests other genetic diseases could be ciliary including 3M syndrome. We show that 3M genes are involved in ciliogenesis, and that patient fibroblasts lack cilia. Overall, this organelle-specific targeting strategy shows considerable promise for Systems Medicine

    Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

    Get PDF
    Intelligence is highly heritable(1) and a major determinant of human health and well-being(2). Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.Peer reviewe

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants
    • 

    corecore