105 research outputs found
Recommended from our members
Observations of Reduced Turbulence and Wave Activity in the Arctic Middle Atmosphere Following the January 2015 Sudden Stratospheric Warming
Measurements of turbulence and waves were made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) on the night of 25â26 January 2015 at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside and bottomside of the MILs. These low levels of turbulence were measured after a minor sudden stratospheric warming when the circulation continued to be disturbed by planetary waves and winds remained weak in the stratosphere and mesosphere. Ground-based lidar measurements characterized the ensemble of inertia-gravity waves and monochromatic gravity waves. The ensemble of inertia-gravity waves had a specific potential energy of 0.8 J/kg over the 40- to 50-km altitude region, one of the lowest values recorded at Chatanika. The turbulence measurements coincided with the overturning of a 2.5-hr monochromatic gravity wave in a depth of 3 km at 85 km. The energy dissipation rates were estimated to be 3 mW/kg for the ensemble of waves and 18 mW/kg for the monochromatic wave. The MTeX observations reveal low levels of turbulence associated with low levels of gravity wave activity. In the light of other Arctic observations and model studies, these observations suggest that there may be reduced turbulence during disturbed winters
Recommended from our members
Observations of Reduced Turbulence and Wave Activity in the Arctic Middle Atmosphere Following the January 2015 Sudden Stratospheric Warming
Measurements of turbulence and waves were made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) on the night of 25â26 January 2015 at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside and bottomside of the MILs. These low levels of turbulence were measured after a minor sudden stratospheric warming when the circulation continued to be disturbed by planetary waves and winds remained weak in the stratosphere and mesosphere. Ground-based lidar measurements characterized the ensemble of inertia-gravity waves and monochromatic gravity waves. The ensemble of inertia-gravity waves had a specific potential energy of 0.8 J/kg over the 40- to 50-km altitude region, one of the lowest values recorded at Chatanika. The turbulence measurements coincided with the overturning of a 2.5-hr monochromatic gravity wave in a depth of 3 km at 85 km. The energy dissipation rates were estimated to be 3 mW/kg for the ensemble of waves and 18 mW/kg for the monochromatic wave. The MTeX observations reveal low levels of turbulence associated with low levels of gravity wave activity. In the light of other Arctic observations and model studies, these observations suggest that there may be reduced turbulence during disturbed winters
Examining the Auroral Ionosphere in Three Dimensions Using Reconstructed 2D Maps of Auroral Data to Drive the 3D GEMINI Model
We use the Geospace Environment Model of Ion-Neutral Interactions (GEMINI) to create three-dimensional, time-dependent simulations of auroral ionospheric parameters in the localized, several 100 km region surrounding auroral arcs observed during a winter 2017 sounding rocket campaign, resolving three-dimensional features of fine-scale (km) flow structures in the vicinity of an auroral arc. The three-dimensional calculations of GEMINI allow (with sufficient driving data) auroral current closure to be investigated without idealizing assumptions of sheet-like structures or height integrated ionospheres. Datamaps for two nearly sheet-like arcs are reconstructed from replications of the Isinglass sounding rocket campaign data, and combined with camera-based particle inversions into a set of driving inputs to run the 3D time-dependent model. Comparisons of model results to radar density profiles and to in situ magnetometry observations are presented. Slices of volumetric current, flow, and conductance structures from model outputs are used to interpret closure currents in an auroral arc region, and are compared to original in situ measurements for verification. The predominant source of return current region field aligned current closure for these slow time variation events is seen to be from the conductance gradients, including the Hall. The importance of the versus terms in the determination of the current structure provides a more complicated picture than a previous GEMINI study, which relied predominantly on the divergence of the electric field to determine current structure. Sensitivity of data-driven model results to details of replication and reconstruction processes are discussed, with improvements outlined for future work
Analysis of Breast Cancer Mortality in the US-1975 to 2019
IMPORTANCE: Breast cancer mortality in the US declined between 1975 and 2019. The association of changes in metastatic breast cancer treatment with improved breast cancer mortality is unclear.
OBJECTIVE: To simulate the relative associations of breast cancer screening, treatment of stage I to III breast cancer, and treatment of metastatic breast cancer with improved breast cancer mortality.
DESIGN, SETTING, AND PARTICIPANTS: Using aggregated observational and clinical trial data on the dissemination and effects of screening and treatment, 4 Cancer Intervention and Surveillance Modeling Network (CISNET) models simulated US breast cancer mortality rates. Death due to breast cancer, overall and by estrogen receptor and ERBB2 (formerly HER2) status, among women aged 30 to 79 years in the US from 1975 to 2019 was simulated.
EXPOSURES: Screening mammography, treatment of stage I to III breast cancer, and treatment of metastatic breast cancer.
MAIN OUTCOMES AND MEASURES: Model-estimated age-adjusted breast cancer mortality rate associated with screening, stage I to III treatment, and metastatic treatment relative to the absence of these exposures was assessed, as was model-estimated median survival after breast cancer metastatic recurrence.
RESULTS: The breast cancer mortality rate in the US (age adjusted) was 48/100âŻ000 women in 1975 and 27/100âŻ000 women in 2019. In 2019, the combination of screening, stage I to III treatment, and metastatic treatment was associated with a 58% reduction (model range, 55%-61%) in breast cancer mortality. Of this reduction, 29% (model range, 19%-33%) was associated with treatment of metastatic breast cancer, 47% (model range, 35%-60%) with treatment of stage I to III breast cancer, and 25% (model range, 21%-33%) with mammography screening. Based on simulations, the greatest change in survival after metastatic recurrence occurred between 2000 and 2019, from 1.9 years (model range, 1.0-2.7 years) to 3.2 years (model range, 2.0-4.9 years). Median survival for estrogen receptor (ER)-positive/ERBB2-positive breast cancer improved by 2.5 years (model range, 2.0-3.4 years), whereas median survival for ER-/ERBB2- breast cancer improved by 0.5 years (model range, 0.3-0.8 years).
CONCLUSIONS AND RELEVANCE: According to 4 simulation models, breast cancer screening and treatment in 2019 were associated with a 58% reduction in US breast cancer mortality compared with interventions in 1975. Simulations suggested that treatment for stage I to III breast cancer was associated with approximately 47% of the mortality reduction, whereas treatment for metastatic breast cancer was associated with 29% of the reduction and screening with 25% of the reduction
Cultural Evolution as Distributed Computation
The speed and transformative power of human cultural evolution is evident
from the change it has wrought on our planet. This chapter proposes a human
computation program aimed at (1) distinguishing algorithmic from
non-algorithmic components of cultural evolution, (2) computationally modeling
the algorithmic components, and amassing human solutions to the non-algorithmic
(generally, creative) components, and (3) combining them to develop
human-machine hybrids with previously unforeseen computational power that can
be used to solve real problems. Drawing on recent insights into the origins of
evolutionary processes from biology and complexity theory, human minds are
modeled as self-organizing, interacting, autopoietic networks that evolve
through a Lamarckian (non-Darwinian) process of communal exchange. Existing
computational models as well as directions for future research are discussed.Comment: 13 pages Gabora, L. (2013). Cultural evolution as distributed human
computation. In P. Michelucci (Ed.) Handbook of Human Computation. Berlin:
Springe
Neurocognitive functioning in acute or early HIV infection
We examined neurocognitive functioning among persons with acute or early HIV infection (AEH) and hypothesized that the neurocognitive performance of AEH individuals would be intermediate between HIV seronegatives (HIVâ) and those with chronic HIV infection. Comprehensive neurocognitive testing was accomplished with 39 AEH, 63 chronically HIV infected, and 38 HIVâ participants. All AEH participants were HIV infected for less than 1Â year. Average domain deficit scores were calculated in seven neurocognitive domains. HIVâ, AEH, and chronically HIV infected groups were ranked from best (rank of 1) to worst (rank of 3) in each domain. All participants received detailed substance use, neuromedical, and psychiatric evaluations and HIV infected persons provided information on antiretroviral treatment and completed laboratory evaluations including plasma and CSF viral loads. A nonparametric test of ordered alternatives (Page test), and the appropriate nonparametric follow-up test, was used to evaluate level of neuropsychological (NP) functioning across and between groups. The median duration of infection for the AEH group was 16Â weeks [interquartile range, IQR: 10.3â40.7] as compared to 4.9Â years [2.8â11.1] in the chronic HIV group. A Page test using ranks of average scores in the seven neurocognitive domains showed a significant monotonic trend with the best neurocognitive functioning in the HIVâ group (mean rankâ=â1.43), intermediate neurocognitive functioning in the AEH group (mean rankâ=â1.71), and the worst in the chronically HIV infected (mean rankâ=â2.86; L statisticâ=â94, pâ<â0.01); however, post-hoc testing comparing neurocognitive impairment of each group against each of the other groups showed that the chronically infected group was significantly different from both the HIVâ and AEH groups on neurocognitive performance; the AEH group was statistically indistinguishable from the HIVâ group. Regression models among HIV infected participants were unable to identify significant predictors of neurocognitive performance. Neurocognitive functioning was worst among persons with chronic HIV infection. Although a significant monotonic trend existed and patterns of the data suggest the AEH individuals may fall intermediate to HIVâ and chronic participants, we were not able to statistically confirm this hypothesis
Diel surface temperature range scales with lake size
Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored
HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors
Combination antiretroviral therapy (CART) has greatly reduced medical morbidity and mortality with HIV infection, but high rates of HIV-associated neurocognitive disorders (HAND) continue to be reported. Because large HIV-infected (HIV+) and uninfected (HIVâ) groups have not been studied with similar methods in the pre-CART and CART eras, it is unclear whether CART has changed the prevalence, nature, and clinical correlates of HAND. We used comparable methods of subject screening and assessments to classify neurocognitive impairment (NCI) in large groups of HIV + and HIV â participants from the pre-CART era (1988â1995; Nâ=â857) and CART era (2000â2007; Nâ=â937). Impairment rate increased with successive disease stages (CDC stages A, B, and C) in both eras: 25%, 42%, and 52% in pre-CART era and 36%, 40%, and 45% in CART era. In the medically asymptomatic stage (CDC-A), NCI was significantly more common in the CART era. Low nadir CD4 predicted NCI in both eras, whereas degree of current immunosuppression, estimated duration of infection, and viral suppression in CSF (on treatment) were related to impairment only pre-CART. Pattern of NCI also differed: pre-CART had more impairment in motor skills, cognitive speed, and verbal fluency, whereas CART era involved more memory (learning) and executive function impairment. High rates of mild NCI persist at all stages of HIV infection, despite improved viral suppression and immune reconstitution with CART. The consistent association of NCI with nadir CD4 across eras suggests that earlier treatment to prevent severe immunosuppression may also help prevent HAND. Clinical trials targeting HAND prevention should specifically examine timing of ART initiation
A communal catalogue reveals Earthâs multiscale microbial diversity
Our growing awareness of the microbial worldâs importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earthâs microbial diversity
A communal catalogue reveals Earth's multiscale microbial diversity
Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
- âŠ