410 research outputs found

    Flipping SU(5) Towards Five Dimensional Unification

    Full text link
    It is shown that embedding of flipped SU(5) in a five-dimensional SO(10) enables exact unification of the gauge coupling constants. The demand for the unification uniquely determines both the compactification scale and the cutoff scale. These are found to be 5.5 \times 10^{14} GeV and 1.0 \times 10^{17} GeV respectively. The theory explains the absence of d=5 proton-decay operators through the implementation of the missing partner mechanism. On the other hand, the presence of d=6 proton-decay operators points towards the bulk localization of the first and the second family of matter fields.Comment: 21 pages, references added, 3 Postscript figures, ReVTeX

    Kaluza-Klein gravitino production with a single photon at e^+ e^- colliders

    Full text link
    In a supersymmetric large extra dimension scenario, the production of Kaluza-Klein gravitinos accompanied by a photino at e^+ e^- colliders is studied. We assume that a bulk supersymmetry is softly broken on our brane such that the low-energy theory resembles the MSSM. Low energy supersymmetry breaking is further assumed as in GMSB, leading to sub-eV mass shift in each KK mode of the gravitino from the corresponding graviton KK mode. Since the photino decays within a detector due to its sufficiently large inclusive decay rate into a photon and a gravitino, the process e^+ e^- -> photino + gravitino yields single photon events with missing energy. Even if the total cross section can be substantial at sqrt(s)=500 GeV, the KK graviton background of e^+ e^- -> photon + graviton is kinematically advantageous and thus much larger. It is shown that the observable, sigma(e^-_L)-sigma(e^-_R), can completely eliminate the KK graviton background but retain most of the KK gravitino signal, which provides a unique and robust method to probe the supersymmetric bulk.Comment: Reference added and typos correcte

    Testing the Nature of Kaluza-Klein Excitations at Future Lepton Colliders

    Get PDF
    With one extra dimension, current high precision electroweak data constrain the masses of the first Kaluza-Klein excitations of the Standard Model gauge fields to lie above ≃4\simeq 4 TeV. States with masses not much larger than this should be observable at the LHC. However, even for first excitation masses close to this lower bound, the second set of excitations will be too heavy to be produced thus eliminating the possibility of realizing the cleanest signature for KK scenarios. Previous studies of heavy Z′Z' and W′W' production in this mass range at the LHC have demonstrated that very little information can be obtained about their couplings to the conventional fermions given the limited available statistics and imply that the LHC cannot distinguish an ordinary Z′Z' from the degenerate pair of the first KK excitations of the γ\gamma and ZZ. In this paper we discuss the capability of lepton colliders with center of mass energies significantly below the excitation mass to resolve this ambiguity. In addition, we examine how direct measurements obtained on and near the top of the first excitation peak at lepton colliders can confirm these results. For more than one extra dimension we demonstrate that it is likely that the first KK excitation is too massive to be produced at the LHC.Comment: 38 pages, 10 Figs, LaTex, comments adde

    New Îł -ray transitions observed in Ne 19 with implications for the O 15 (Îą,Îł) Ne 19 reaction rate

    Get PDF
    The O15(α,γ)Ne19 reaction is responsible for breakout from the hot CNO cycle in type I x-ray bursts. Understanding the properties of resonances between Ex=4 and 5 MeV in Ne19 is crucial in the calculation of this reaction rate. The spins and parities of these states are well known, with the exception of the 4.14- and 4.20-MeV states, which have adopted spin-parities of 9/2- and 7/2-, respectively. γ-ray transitions from these states were studied using triton-γ-γ coincidences from the F19(He3,tγ)Ne19 reaction measured with the GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies) at Argonne National Laboratory. The observed transitions from the 4.14- and 4.20-MeV states provide strong evidence that the Jπ values are actually 7/2- and 9/2-, respectively. These assignments are consistent with the values in the F19 mirror nucleus and in contrast to previously accepted assignments

    Îł -ray spectroscopy of astrophysically important states in Ca 39

    Get PDF
    Background: Nova explosions synthesize elements up to A≃40, and discrepancies exist between calculated and observed abundances of Ar and Ca created in the explosion. The K38(p,γ)Ca39 reaction rate has been shown to be influential on these isotopic abundances at the endpoint of nova nucleosynthesis. The energies of the three most important resonances, corresponding to Jπ=5/2+ excited states in the Ca39 nucleus above the proton separation threshold, are uncertain and one has been measured with conflicting values [Er=679(2) versus Er=701(2) keV] in previous experiments. Purpose: Reducing the uncertainties on the resonance energies would allow for a better understanding of the reaction rate. To improve these uncertainties, we searched for γ rays from the depopulation of the corresponding excited states in Ca39. Methods: We report a new measurement of these resonance energies via the observation of previously unobserved γ-ray transitions. These transitions were observed by studying the Ca40(3He,αγ)Ca39 reaction with Gammasphere ORRUBA Dual Detectors for Experimental Structure Studies (GODDESS). The updated resonance energies were then used to calculate the K38(p,γ)Ca39 reaction rate and assess its uncertainties. Results: In total, 23 new transitions were found, including three γ-ray transitions corresponding to the three Jπ=5/2+ states of astrophysical interest at energies of 6156.2(16), 6268.8(22), and 6470.8(19) keV. These correspond to resonance energies in the K38(p,γ)Ca39 reaction of 386(2), 498(2), and 701(2) keV. Conclusions: Updated K38(p,γ)Ca39 reaction rate calculations show a reduced upper limit at nova temperatures. However, the lower-than-previously-measured energy of the 498-keV resonance and uncertainty in its resonance strength increases the upper limit of the rate close to previous estimates at 0.4 GK

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters

    Measurement of the Lambda(b) cross section and the anti-Lambda(b) to Lambda(b) ratio with Lambda(b) to J/Psi Lambda decays in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The Lambda(b) differential production cross section and the cross section ratio anti-Lambda(b)/Lambda(b) are measured as functions of transverse momentum pt(Lambda(b)) and rapidity abs(y(Lambda(b))) in pp collisions at sqrt(s) = 7 TeV using data collected by the CMS experiment at the LHC. The measurements are based on Lambda(b) decays reconstructed in the exclusive final state J/Psi Lambda, with the subsequent decays J/Psi to an opposite-sign muon pair and Lambda to proton pion, using a data sample corresponding to an integrated luminosity of 1.9 inverse femtobarns. The product of the cross section times the branching ratio for Lambda(b) to J/Psi Lambda versus pt(Lambda(b)) falls faster than that of b mesons. The measured value of the cross section times the branching ratio for pt(Lambda(b)) > 10 GeV and abs(y(Lambda(b))) < 2.0 is 1.06 +/- 0.06 +/- 0.12 nb, and the integrated cross section ratio for anti-Lambda(b)/Lambda(b) is 1.02 +/- 0.07 +/- 0.09, where the uncertainties are statistical and systematic, respectively.Comment: Submitted to Physics Letters

    Search for new physics in events with opposite-sign leptons, jets, and missing transverse energy in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search is presented for physics beyond the standard model (BSM) in final states with a pair of opposite-sign isolated leptons accompanied by jets and missing transverse energy. The search uses LHC data recorded at a center-of-mass energy sqrt(s) = 7 TeV with the CMS detector, corresponding to an integrated luminosity of approximately 5 inverse femtobarns. Two complementary search strategies are employed. The first probes models with a specific dilepton production mechanism that leads to a characteristic kinematic edge in the dilepton mass distribution. The second strategy probes models of dilepton production with heavy, colored objects that decay to final states including invisible particles, leading to very large hadronic activity and missing transverse energy. No evidence for an event yield in excess of the standard model expectations is found. Upper limits on the BSM contributions to the signal regions are deduced from the results, which are used to exclude a region of the parameter space of the constrained minimal supersymmetric extension of the standard model. Additional information related to detector efficiencies and response is provided to allow testing specific models of BSM physics not considered in this paper.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore