38 research outputs found

    A Photo Score for Aesthetic Outcome in Sagittal Synostosis:An ERN CRANIO Collaboration

    Get PDF
    European Reference Network (ERN) CRANIO is focused on optimizing care for patients with rare or complex craniofacial anomalies, including craniosynostosis and/or rare ear, nose, and throat disorders. The main goal of ERN CRANIO is to collect uniform data on treatment outcomes for multicenter comparison. We aimed to develop a reproducible and reliable suture-specific photo score that can be used for cross-center comparison of phenotypical severity of sagittal synostosis and aesthetic outcome of treatment. We conducted a retrospective study among nonsyndromic sagittal synostosis patients aged &lt;19 years. We included preoperative and postoperative photo sets from 6 ERN CRANIO centers. Photo sets included bird's eye, lateral, and anterior-posterior views. The sagittal synostosis photo score was discussed in the working group, and consensus was obtained on its contents. Interrater agreement was assessed with weighted Fleiss' Kappa and intraclass correlation coefficients.The photo score consisted of frontal bossing, elongated skull, biparietal narrowness, temporal hollowing, vertex line depression, occipital bullet, and overall phenotype. Each item was scored as normal, mild, moderate, or severe. Results from 36 scaphocephaly patients scored by 20 raters showed kappa values ranging from 0.38 [95% bootstrap CI: 0.31, 0.45] for biparietal narrowness to 0.56 [95% bootstrap CI: 0.47, 0.64] for frontal bossing. Agreement was highest for the sum score of individual items [intraclass correlation coefficients agreement 0.69 [95% CI: 0.57, 0.82]. This is the first large-scale multicenter study in which experts investigated a photo score to assess the severity of sagittal synostosis phenotypical characteristics. Agreement on phenotypical characteristics was suboptimal (fair-moderate agreement) and highest for the summed score of individual photo score items (substantial agreement), indicating that although experts interpret phenotypical characteristics differently, there is consensus on overall phenotypical severity.</p

    Virus infection and grazing exert counteracting influences on survivorship of native bunchgrass seedlings competing with invasive exotics

    Get PDF
    1.  Invasive annual grasses introduced by European settlers have largely displaced native grassland vegetation in California and now form dense stands that constrain the establishment of native perennial bunchgrass seedlings. Bunchgrass seedlings face additional pressures from both livestock grazing and barley and cereal yellow dwarf viruses (B/CYDVs), which infect both young and established grasses throughout the state. 2.  Previous work suggested that B/CYDVs could mediate apparent competition between invasive exotic grasses and native bunchgrasses in California. 3.  To investigate the potential significance of virus-mediated mortality for early survivorship of bunchgrass seedlings, we compared the separate and combined effects of virus infection, competition and simulated grazing in a field experiment. We infected two species of young bunchgrasses that show different sensitivity to B/CYDV infection, subjected them to competition with three different densities of exotic annuals crossed with two clipping treatments, and monitored their growth and first-year survivorship. 4.  Although virus infection alone did not reduce first-year survivorship, it halved the survivorship of bunchgrasses competing with exotics. Within an environment in which competition strongly reduces seedling survivorship (as in natural grasslands), virus infection therefore has the power to cause additional seedling mortality and alter patterns of establishment. 5.  Surprisingly, clipping did not reduce bunchgrass survivorship further, but rather doubled it and disproportionately increased survivorship of infected bunchgrasses. 6.  Together with previous work, these findings show that B/CYDVs can be potentially powerful elements influencing species interactions in natural grasslands. 7.  More generally, our findings demonstrate the potential significance of multitrophic interactions in virus ecology. Although sometimes treated collectively as plant ‘predators’, viruses and herbivores may exert influences that are distinctly different, even counteracting

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Search for long-lived neutral particles in pp collisions at s√=13 TeV that decay into displaced hadronic jets in the ATLAS calorimeter

    Get PDF
    This paper describes a search for pairs of neutral, long-lived particles decaying in the ATLAS calorimeter. Long-lived particles occur in many extensions to the Standard Model and may elude searches for new promptly decaying particles. The analysis considers neutral, long-lived scalars with masses between 5 and 400 GeV, produced from decays of heavy bosons with masses between 125 and 1000 GeV, where the long-lived scalars decay into Standard Model fermions. The analysis uses either 10.8 fb−1 or 33.0 fb−1 of data (depending on the trigger) recorded in 2016 at the LHC with the ATLAS detector in proton–proton collisions at a centre-of-mass energy of 13 TeV. No significant excess is observed, and limits are reported on the production cross section times branching ratio as a function of the proper decay length of the long-lived particles

    Study of Z → llγ decays at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a study of Z → llγ decays with the ATLAS detector at the Large Hadron Collider. The analysis uses a proton–proton data sample corresponding to an integrated luminosity of 20.2 fb−1 collected at a centre-ofmass energy √s = 8 TeV. Integrated fiducial cross-sections together with normalised differential fiducial cross-sections, sensitive to the kinematics of final-state QED radiation, are obtained. The results are found to be in agreement with stateof-the-art predictions for final-state QED radiation. First measurements of Z → llγ γ decays are also reported

    Constraints on spin-0 dark matter mediators and invisible Higgs decays using ATLAS 13 TeV pp collision data with two top quarks and missing transverse momentum in the final state

    Get PDF
    This paper presents a statistical combination of searches targeting final states with two top quarks and invisible particles, characterised by the presence of zero, one or two leptons, at least one jet originating from a b-quark and missing transverse momentum. The analyses are searches for phenomena beyond the Standard Model consistent with the direct production of dark matter in pp collisions at the LHC, using 139 fb−1 of data collected with the ATLAS detector at a centre-of-mass energy of 13 TeV. The results are interpreted in terms of simplified dark matter models with a spin-0 scalar or pseudoscalar mediator particle. In addition, the results are interpreted in terms of upper limits on the Higgs boson invisible branching ratio, where the Higgs boson is produced according to the Standard Model in association with a pair of top quarks. For scalar (pseudoscalar) dark matter models, with all couplings set to unity, the statistical combination extends the mass range excluded by the best of the individual channels by 50 (25) GeV, excluding mediator masses up to 370 GeV. In addition, the statistical combination improves the expected coupling exclusion reach by 14% (24%), assuming a scalar (pseudoscalar) mediator mass of 10 GeV. An upper limit on the Higgs boson invisible branching ratio of 0.38 (0.30+0.13−0.09) is observed (expected) at 95% confidence level

    Software performance of the ATLAS track reconstruction for LHC run 3

    Get PDF
    Charged particle reconstruction in the presence of many simultaneous proton–proton (pp) collisions in the LHC is a challenging task for the ATLAS experiment’s reconstruction software due to the combinatorial complexity. This paper describes the major changes made to adapt the software to reconstruct high-activity collisions with an average of 50 or more simultaneous pp interactions per bunch crossing (pileup) promptly using the available computing resources. The performance of the key components of the track reconstruction chain and its dependence on pile-up are evaluated, and the improvement achieved compared to the previous software version is quantified. For events with an average of 60 pp collisions per bunch crossing, the updated track reconstruction is twice as fast as the previous version, without significant reduction in reconstruction efficiency and while reducing the rate of combinatorial fake tracks by more than a factor two

    Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with charged leptons and jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for heavy right-handed Majorana or Dirac neutrinos NR and heavy right-handed gauge bosons WR is performed in events with energetic electrons or muons, with the same or opposite electric charge, and energetic jets. The search is carried out separately for topologies of clearly separated final-state products (“resolved” channel) and topologies with boosted final states with hadronic and/or leptonic products partially overlapping and reconstructed as a large-radius jet (“boosted” channel). The events are selected from pp collision data at the LHC with an integrated luminosity of 139 fb−1 collected by the ATLAS detector at √s = 13 TeV. No significant deviations from the Standard Model predictions are observed. The results are interpreted within the theoretical framework of a left-right symmetric model, and lower limits are set on masses in the heavy righthanded WR boson and NR plane. The excluded region extends to about m(WR) = 6.4 TeV for both Majorana and Dirac NR neutrinos at m(NR) < 1 TeV. NR with masses of less than 3.5 (3.6) TeV are excluded in the electron (muon) channel at m(WR) = 4.8 TeV for the Majorana neutrinos, and limits of m(NR) up to 3.6 TeV for m(WR) = 5.2 (5.0) TeV in the electron (muon) channel are set for the Dirac neutrinos. These constitute the most stringent exclusion limits to date for the model considered

    Deep generative models for fast photon shower simulation in ATLAS

    Get PDF
    The need for large-scale production of highly accurate simulated event samples for the extensive physics programme of the ATLAS experiment at the Large Hadron Collider motivates the development of new simulation techniques. Building on the recent success of deep learning algorithms, variational autoencoders and generative adversarial networks are investigated for modelling the response of the central region of the ATLAS electromagnetic calorimeter to photons of various energies. The properties of synthesised showers are compared with showers from a full detector simulation using geant4. Both variational autoencoders and generative adversarial networks are capable of quickly simulating electromagnetic showers with correct total energies and stochasticity, though the modelling of some shower shape distributions requires more refinement. This feasibility study demonstrates the potential of using such algorithms for ATLAS fast calorimeter simulation in the future and shows a possible way to complement current simulation techniques
    corecore