613 research outputs found

    Connecting to smart cities : analyzing energy times series to visualize monthly electricity peak load in residential buildings

    Get PDF
    Rapidly growing energy consumption rate is considered an alarming threat to economic stability and environmental sustainability. There is an urgent need of proposing novel solutions to mitigate the drastic impact of increased energy demand in urban cities to improve energy efficiency in smart buildings. It is commonly agreed that exploring, analyzing and visualizing energy consumption patterns in residential buildings can help to estimate their energy demands. Moreover, visualizing energy consumption patterns of residential buildings can also help to diagnose if there is any unpredictable increase in energy demand at a certain time period. However, visualizing and inferring energy consumption patterns from typical line graphs, bar charts, scatter plots is obsolete, less informative and do not provide deep and significant insight of the daily domestic demand of energy utilization. Moreover, these methods become less significant when high temporal resolution is required. In this research work, advanced data exploratory and data analytics techniques are applied on energy time series. Data exploration results are presented in the form of heatmap. Heatmap provides a significant insight of energy utilization behavior during different times of the day. Heatmap results are articulated from three analytical perspectives; descriptive analysis, diagnostic analysis and contextual analysis

    The common NOD2/CARD15 variant P268S in patients with non-infectious uveitis: a cohort study

    Full text link
    Background: The etiology of Autoimmune chronic uveitis (ACU) is still unknown; NOD2/CARD15 gene mutations are responsible for the Blau Syndrome and can induce uveitis in animal models. Presentation of the hypothesis: Aim of our study was to assess if NOD2/CARD15 variants have a role in the etiology or in the clinical course of patients with ACU, either idiopathic or associated with other inflammatory diseases. Testing the hypothesis: We consecutively enrolled 25 patients (19 pediatric and 6 adults) affected with ACU. For each patient medical history was reviewed and clinical data were recorded. Allelic and genotypic frequencies of NOD2/CARD15 variations were calculated in patients and matched with those of 25 healthy controls. The statistical analysis was performed. Fifteen patients showed the polymorphism P268S/SNP5 (SNP rs2066842) as heterozygous carriers while two patients were homozygous for the same polymorphism; one patient carried also the variant c647 18-16 TCT on intron 3, not previously reported in the literature. Statistical analysis for NOD2/CARD15 genotyping showed significant differences between patients and controls for allelic frequencies (p=0.04, OR: 4.03, 95 %; CI=1.2-13.5) but not for genotypic frequencies. We could not identify a significant phenotype-genotype correlation. Implications of the hypothesis: In our cohort of Italian patients, the NOD2/CARD15 common variant P268S/SNP5 could potentially be significantly associated with ACU

    The merger that led to the formation of the Milky Way's inner stellar halo and thick disk

    Get PDF
    The assembly process of our Galaxy can be retrieved using the motions and chemistry of individual stars. Chemo-dynamical studies of the nearby halo have long hinted at the presence of multiple components such as streams, clumps, duality and correlations between the stars' chemical abundances and orbital parameters. More recently, the analysis of two large stellar surveys have revealed the presence of a well-populated chemical elemental abundance sequence, of two distinct sequences in the colour-magnitude diagram, and of a prominent slightly retrograde kinematic structure all in the nearby halo, which may trace an important accretion event experienced by the Galaxy. Here report an analysis of the kinematics, chemistry, age and spatial distribution of stars in a relatively large volume around the Sun that are mainly linked to two major Galactic components, the thick disk and the stellar halo. We demonstrate that the inner halo is dominated by debris from an object which at infall was slightly more massive than the Small Magellanic Cloud, and which we refer to as Gaia-Enceladus. The stars originating in Gaia-Enceladus cover nearly the full sky, their motions reveal the presence of streams and slightly retrograde and elongated trajectories. Hundreds of RR Lyrae stars and thirteen globular clusters following a consistent age-metallicity relation can be associated to Gaia-Enceladus on the basis of their orbits. With an estimated 4:1 mass-ratio, the merger with Gaia-Enceladus must have led to the dynamical heating of the precursor of the Galactic thick disk and therefore contributed to the formation of this component approximately 10 Gyr ago. These findings are in line with simulations of galaxy formation, which predict that the inner stellar halo should be dominated by debris from just a few massive progenitors.Comment: 19 pages, 8 figures. Published in Nature in the issue of Nov. 1st, 2018. This is the authors' version before final edit

    Reverberation Mapping and the Physics of Active Galactic Nuclei

    Get PDF
    Reverberation-mapping campaigns have revolutionized our understanding of AGN. They have allowed the direct determination of the broad-line region size, enabled mapping of the gas distribution around the central black hole, and are starting to resolve the continuum source structure. This review describes the recent and successful campaigns of the International AGN Watch consortium, outlines the theoretical background of reverberation mapping and the calculation of transfer functions, and addresses the fundamental difficulties of such experiments. It shows that such large-scale experiments have resulted in a ``new BLR'' which is considerably different from the one we knew just ten years ago. We discuss in some detail the more important new results, including the luminosity-size-mass relationship for AGN, and suggest ways to proceed in the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure

    SUSY Splits, But Then Returns

    Full text link
    We study the phenomenon of accidental or "emergent" supersymmetry within gauge theory and connect it to the scenarios of Split Supersymmetry and Higgs compositeness. Combining these elements leads to a significant refinement and extension of the proposal of Partial Supersymmetry, in which supersymmetry is broken at very high energies but with a remnant surviving to the weak scale. The Hierarchy Problem is then solved by a non-trivial partnership between supersymmetry and compositeness, giving a promising approach for reconciling Higgs naturalness with the wealth of precision experimental data. We discuss aspects of this scenario from the AdS/CFT dual viewpoint of higher-dimensional warped compactification. It is argued that string theory constructions with high scale supersymmetry breaking which realize warped/composite solutions to the Hierarchy Problem may well be accompanied by some or all of the features described. The central phenomenological considerations and expectations are discussed, with more detailed modelling within warped effective field theory reserved for future work.Comment: 29 pages. Flavor and CP constraints on left-right symmetric structure briefly discussed. References adde

    Reddening-free Q indices to identify Be star candidates

    Full text link
    Astronomical databases currently provide high-volume spectroscopic and photometric data. While spectroscopic data is better suited to the analysis of many astronomical objects, photometric data is relatively easier to obtain due to shorter telescope usage time. Therefore, there is a growing need to use photometric information to automatically identify objects for further detailed studies, specially H{\alpha} emission line stars such as Be stars. Photometric color-color diagrams (CCDs) are commonly used to identify this kind of objects. However, their identification in CCDs is further complicated by the reddening effect caused by both the circumstellar and interstellar gas. This effect prevents the generalization of candidate identification systems. Therefore, in this work we evaluate the use of neural networks to identify Be star candidates from a set of OB-type stars. The networks are trained using a labeled subset of the VPHAS+ and 2MASS databases, with filters u, g, r, H{\alpha}, i, J, H, and K. In order to avoid the reddening effect, we propose and evaluate the use of reddening-free Q indices to enhance the generalization of the model to other databases and objects. To test the validity of the approach, we manually labeled a subset of the database, and use it to evaluate candidate identification models. We also labeled an independent dataset for cross dataset evaluation. We evaluate the recall of the models at a 99% precision level on both test sets. Our results show that the proposed features provide a significant improvement over the original filter magnitudes.Comment: 14 pages, 4 figures, Accepted for inclusion in the JCC-BD&ET 2020 minutes book, which will be published in the Springer series CCIS - Communications in Computer and Information Scienc

    Brane-World Gravity

    Get PDF
    The observable universe could be a 1+3-surface (the "brane") embedded in a 1+3+\textit{d}-dimensional spacetime (the "bulk"), with Standard Model particles and fields trapped on the brane while gravity is free to access the bulk. At least one of the \textit{d} extra spatial dimensions could be very large relative to the Planck scale, which lowers the fundamental gravity scale, possibly even down to the electroweak (∌\sim TeV) level. This revolutionary picture arises in the framework of recent developments in M theory. The 1+10-dimensional M theory encompasses the known 1+9-dimensional superstring theories, and is widely considered to be a promising potential route to quantum gravity. At low energies, gravity is localized at the brane and general relativity is recovered, but at high energies gravity "leaks" into the bulk, behaving in a truly higher-dimensional way. This introduces significant changes to gravitational dynamics and perturbations, with interesting and potentially testable implications for high-energy astrophysics, black holes, and cosmology. Brane-world models offer a phenomenological way to test some of the novel predictions and corrections to general relativity that are implied by M theory. This review analyzes the geometry, dynamics and perturbations of simple brane-world models for cosmology and astrophysics, mainly focusing on warped 5-dimensional brane-worlds based on the Randall--Sundrum models. We also cover the simplest brane-world models in which 4-dimensional gravity on the brane is modified at \emph{low} energies -- the 5-dimensional Dvali--Gabadadze--Porrati models. Then we discuss co-dimension two branes in 6-dimensional models.Comment: A major update of Living Reviews in Relativity 7:7 (2004) "Brane-World Gravity", 119 pages, 28 figures, the update contains new material on RS perturbations, including full numerical solutions of gravitational waves and scalar perturbations, on DGP models, and also on 6D models. A published version in Living Reviews in Relativit

    Incidence and mortality rates of selected infection-related cancers in Puerto Rico and in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2002, 17.8% of the global cancer burden was attributable to infections. This study assessed the age-standardized incidence and mortality rates of stomach, liver, and cervical cancer in Puerto Rico (PR) for the period 1992-2003 and compared them to those of Hispanics (USH), non-Hispanic Whites (NHW), and non-Hispanic Blacks (NHB) in the United States (US).</p> <p>Methods</p> <p>Age-standardized rates [ASR(World)] were calculated based on cancer incidence and mortality data from the PR Cancer Central Registry and SEER, using the direct method and the world population as the standard. Annual percent changes (APC) were calculated using the Poisson regression model from 1992-2003.</p> <p>Results</p> <p>The incidence and mortality rates from stomach, liver and cervical cancer were lower in NHW than PR; with the exception of mortality from cervical cancer which was similar in both populations. Meanwhile, the incidence rates of stomach, liver and cervical cancers were similar between NHB and PR; except for NHB women who had a lower incidence rate of liver cancer than women in PR. NHB had a lower mortality from liver cancer than persons in PR, and similar mortality from stomach cancer.</p> <p>Conclusions</p> <p>The burden of liver, stomach, and cervical cancer in PR compares to that of USH and NHB and continues to be a public health priority. Public health efforts are necessary to further decrease the burden of cancers associated to infections in these groups, the largest minority population groups in the US. Future studies need to identify factors that may prevent infections with cancer-related agents in these populations. Strategies to increase the use of preventive strategies, such as vaccination and screening, among minority populations should also be developed.</p

    NIOX VERO: Individualized Asthma Management in Clinical Practice

    Get PDF
    As we move toward an era of precision medicine, novel biomarkers of disease will enable the identification and personalized treatment of new endotypes. In asthma, fractional exhaled nitric oxide (FeNO) serves as a surrogate marker of airway inflammation that often correlates with the presence of sputum eosinophils. The increase in FeNO is driven by an upregulation of inducible nitric oxide synthase (iNOS) by cytokines, which are released as a result of type-2 airway inflammation. Scientific evidence supports using FeNO in routine clinical practice. In steroid-naive patients and in patients with mild asthma, FeNO levels decrease within days after corticosteroid treatment in a dose-dependent fashion and increase after steroid withdrawal. In difficult asthma, FeNO testing correlates with anti-inflammatory therapy compliance. Assessing adherence by FeNO testing can remove the confrontational aspect of questioning a patient about compliance and change the conversation to one of goal setting and ways to improve disease management. However, the most important aspect of incorporating FeNO in asthma management is the reduction in the risk of exacerbations. In a recent primary care study, reduction of exacerbation rates and improved symptom control without increasing overall inhaled corticosteroid (ICS) use were demonstrated when a FeNO-guided anti-inflammatory treatment algorithm was assessed and compared to the standard care. A truly personalized asthma management approach—showing reduction of exacerbation rates, overall use of ICS and neonatal hospitalizations—was demonstrated when FeNO testing was applied as part of the treatment algorithm that managed asthma during pregnancy. The aim of this article is to describe how FeNO and the NIOX VERO¼ analyzer can help to optimize diagnosis and treatment choices and to aid in the monitoring and improvement of clinical asthma outcomes in children and adults

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore