459 research outputs found

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Recommendations for the transition of patients with ADHD from child to adult healthcare services:a consensus statement from the UK adult ADHD network

    Get PDF
    The aim of this consensus statement was to discuss transition of patients with ADHD from child to adult healthcare services, and formulate recommendations to facilitate successful transition. An expert workshop was convened in June 2012 by the UK Adult ADHD Network (UKAAN), attended by a multidisciplinary team of mental health professionals, allied professionals and patients. It was concluded that transitions must be planned through joint meetings involving referring/receiving services, patients and their families. Negotiation may be required to balance parental desire for continued involvement in their child’s care, and the child’s growing autonomy. Clear transition protocols can maintain standards of care, detailing relevant timeframes, responsibilities of agencies and preparing contingencies. Transition should be viewed as a process not an event, and should normally occur by the age of 18, however flexibility is required to accommodate individual needs. Transition is often poorly experienced, and adherence to clear recommendations is necessary to ensure effective transition and prevent drop-out from services

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Systematic review of the relationship between family history and lung cancer risk

    Get PDF
    We performed a systematic review of 28 case–control, 17 cohort and seven twin studies of the relationship between family history and risk of lung cancer and a meta-analysis of risk estimates. Data from both case–control and cohort studies show a significantly increased lung cancer risk associated with having an affected relative. Risk appears to be greater in relatives of cases diagnosed at a young age and in those with multiple affected family members. Increased lung cancer risk was observed in association with an affected spouse and twin studies, while limited, favour shared environmental exposures. The limitations of the currently published epidemiological studies to infer genetic susceptibility are discussed

    Genetic Differentiation, Structure, and a Transition Zone among Populations of the Pitcher Plant Moth Exyra semicrocea: Implications for Conservation

    Get PDF
    Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9–3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats

    Etoposide Induces ATM-Dependent Mitochondrial Biogenesis through AMPK Activation

    Get PDF
    DNA damage such as double-stranded DNA breaks (DSBs) has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated). Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the alpha subunit of AMP-activated protein kinase (AMPK), which senses AMP/ATP ratio in cells, and can be activated by upstream kinases. Here we provide evidence for a novel role of ATM in mitochondrial biogenesis through AMPK activation in response to etoposide-induced DNA damage.Three pairs of human ATM+ and ATM- cells were employed. Cells treated with etoposide exhibited an ATM-dependent increase in mitochondrial mass as measured by 10-N-Nonyl-Acridine Orange and MitoTracker Green FM staining, as well as an increase in mitochondrial DNA content. In addition, the expression of several known mitochondrial biogenesis regulators such as the major mitochondrial transcription factor NRF-1, PGC-1alpha and TFAM was also elevated in response to etoposide treatment as monitored by RT-PCR. Three pieces of evidence suggest that etoposide-induced mitochondrial biogenesis is due to ATM-dependent activation of AMPK. First, etoposide induced ATM-dependent phosphorylation of AMPK alpha subunit at Thr172, indicative of AMPK activation. Second, inhibition of AMPK blocked etoposide-induced mitochondrial biogenesis. Third, activation of AMPK by AICAR (an AMP analogue) stimulated mitochondrial biogenesis in an ATM-dependent manner, suggesting that ATM may be an upstream kinase of AMPK in the mitochondrial biogenesis pathway.These results suggest that activation of ATM by etoposide can lead to mitochondrial biogenesis through AMPK activation. We propose that ATM-dependent mitochondrial biogenesis may play a role in DNA damage response and ROS regulation, and that defect in ATM-dependent mitochondrial biogenesis could contribute to the manifestations of A-T disease

    Fungal community composition and metabolism under elevated CO 2 and O 3

    Full text link
    Atmospheric CO 2 and O 3 concentrations are increasing due to human activity and both trace gases have the potential to alter C cycling in forest ecosystems. Because soil microorganisms depend on plant litter as a source of energy for metabolism, changes in the amount or the biochemistry of plant litter produced under elevated CO 2 and O 3 could alter microbial community function and composition. Previously, we have observed that elevated CO 2 increased the microbial metabolism of cellulose and chitin, whereas elevated O 3 dampened this response. We hypothesized that this change in metabolism under CO 2 and O 3 enrichment would be accompanied by a concomitant change in fungal community composition. We tested our hypothesis at the free-air CO 2 and O 3 enrichment (FACE) experiment at Rhinelander, Wisconsin, in which Populus tremuloides , Betula papyrifera , and Acer saccharum were grown under factorial CO 2 and O 3 treatments. We employed extracellular enzyme analysis to assay microbial metabolism, phospholipid fatty acid (PLFA) analysis to determine changes in microbial community composition, and polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) to analyze the fungal community composition. The activities of 1,4-β-glucosidase (+37%) and 1,4,-β- N -acetylglucosaminidase (+84%) were significantly increased under elevated CO 2 , whereas 1,4-β-glucosidase activity (−25%) was significantly suppressed by elevated O 3 . There was no significant main effect of elevated CO 2 or O 3 on fungal relative abundance, as measured by PLFA. We identified 39 fungal taxonomic units from soil using DGGE, and found that O 3 enrichment significantly altered fungal community composition. We conclude that fungal metabolism is altered under elevated CO 2 and O 3 , and that there was a concomitant change in fungal community composition under elevated O 3 . Thus, changes in plant inputs to soil under elevated CO 2 and O 3 can propagate through the microbial food web to alter the cycling of C in soil.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47711/1/442_2005_Article_249.pd
    corecore