992 research outputs found

    Steady-state patterns in a reaction diffusion system with mixed boundary conditions

    Get PDF
    A number of models for pattern formation and regulation are based on the hypothesis that a diffusible morphogen supplies positional information that can interpreted by cells. Such models fall into two main classes:- those in which pattern arises from distributed sources and/or sinks of the morphogens, and those which can spontaneously produce pattern via the interaction of reaction and transport. In source-sink models, specialized cells maintain the concentration of the morphogen at fixed levels, and given a suitable distribution of sources and sinks, a tissue can be proportioned into any number of cell types with a threshold interpretation mechanism. However, the spatial pattern established is strongly dependent on the distances between the sources and sinks, and additional hyoptheses must be invoked to ensure that the pattern is invariant under changes in the scale of the system

    Development and preliminary evaluation of EMPOWER for surrogate decision-makers of critically ill patients

    Get PDF
    OBJECTIVE: The objectives of this study were to develop and refine EMPOWER (Enhancing and Mobilizing the POtential for Wellness and Resilience), a brief manualized cognitive-behavioral, acceptance-based intervention for surrogate decision-makers of critically ill patients and to evaluate its preliminary feasibility, acceptability, and promise in improving surrogates' mental health and patient outcomes. METHOD: Part 1 involved obtaining qualitative stakeholder feedback from 5 bereaved surrogates and 10 critical care and mental health clinicians. Stakeholders were provided with the manual and prompted for feedback on its content, format, and language. Feedback was organized and incorporated into the manual, which was then re-circulated until consensus. In Part 2, surrogates of critically ill patients admitted to an intensive care unit (ICU) reporting moderate anxiety or close attachment were enrolled in an open trial of EMPOWER. Surrogates completed six, 15-20 min modules, totaling 1.5-2 h. Surrogates were administered measures of peritraumatic distress, experiential avoidance, prolonged grief, distress tolerance, anxiety, and depression at pre-intervention, post-intervention, and at 1-month and 3-month follow-up assessments. RESULTS: Part 1 resulted in changes to the EMPOWER manual, including reducing jargon, improving navigability, making EMPOWER applicable for a range of illness scenarios, rearranging the modules, and adding further instructions and psychoeducation. Part 2 findings suggested that EMPOWER is feasible, with 100% of participants completing all modules. The acceptability of EMPOWER appeared strong, with high ratings of effectiveness and helpfulness (M = 8/10). Results showed immediate post-intervention improvements in anxiety (d = -0.41), peritraumatic distress (d = -0.24), and experiential avoidance (d = -0.23). At the 3-month follow-up assessments, surrogates exhibited improvements in prolonged grief symptoms (d = -0.94), depression (d = -0.23), anxiety (d = -0.29), and experiential avoidance (d = -0.30). SIGNIFICANCE OF RESULTS: Preliminary data suggest that EMPOWER is feasible, acceptable, and associated with notable improvements in psychological symptoms among surrogates. Future research should examine EMPOWER with a larger sample in a randomized controlled trial

    Turing patterns on networks

    Full text link
    Turing patterns formed by activator-inhibitor systems on networks are considered. The linear stability analysis shows that the Turing instability generally occurs when the inhibitor diffuses sufficiently faster than the activator. Numerical simulations, using a prey-predator model on a scale-free random network, demonstrate that the final, asymptotically reached Turing patterns can be largely different from the critical modes at the onset of instability, and multistability and hysteresis are typically observed. An approximate mean-field theory of nonlinear Turing patterns on the networks is constructed.Comment: 4 pages, 4 figure

    Conductance Ratios and Cellular Identity

    Get PDF
    Recent experimental evidence suggests that coordinated expression of ion channels plays a role in constraining neuronal electrical activity. In particular, each neuronal cell type of the crustacean stomatogastric ganglion exhibits a unique set of positive linear correlations between ionic membrane conductances. These data suggest a causal relationship between expressed conductance correlations and features of cellular identity, namely electrical activity type. To test this idea, we used an existing database of conductance-based model neurons. We partitioned this database based on various measures of intrinsic activity, to approximate distinctions between biological cell types. We then tested individual conductance pairs for linear dependence to identify correlations. Contrary to experimental evidence, in which all conductance correlations are positive, 32% of correlations seen in this database were negative relationships. In addition, 80% of correlations seen here involved at least one calcium conductance, which have been difficult to measure experimentally. Similar to experimental results, each activity type investigated had a unique combination of correlated conductances. Finally, we found that populations of models that conform to a specific conductance correlation have a higher likelihood of exhibiting a particular feature of electrical activity. We conclude that regulating conductance ratios can support proper electrical activity of a wide range of cell types, particularly when the identity of the cell is well-defined by one or two features of its activity. Furthermore, we predict that previously unseen negative correlations and correlations involving calcium conductances are biologically plausible

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT
    • 

    corecore