452 research outputs found

    Interfaces: The Next NDE Challenge

    Get PDF
    Nondestructive evaluation, as practiced in the 1960’s, attempted to detect (but was often unable to characterize) the existence of defects in engineering structures. Qualitative criteria were used in the assessment of defect significance and the determination of accept/reject decisions. Advances in elasto-plastic fracture mechanics during the 1970’s focused attention upon the defect size and orientation- if these could be measured, then fracture mechanics was capable of quantitative structural integrity evaluation. The papers presented in this conference series during the 1980’s trace the considerable advances of quantitative nondestructive evaluation in satisfying this measurement need. Nowadays, for monolithic materials with well defined fracture toughness, the overconservative rejection criteria of the past are beginning to be replaced by “retirement for cause” concepts

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    The INT6 Cancer Gene and MEK Signaling Pathways Converge during Zebrafish Development

    Get PDF
    BACKGROUND: Int-6 (integration site 6) was identified as an oncogene in a screen of tumorigenic mouse mammary tumor virus (MMTV) insertions. INT6 expression is altered in human cancers, but the precise role of disrupted INT6 in tumorigenesis remains unclear, and an animal model to study Int-6 physiological function has been lacking. PRINCIPAL FINDINGS: Here, we create an in vivo model of Int6 function in zebrafish, and through genetic and chemical-genetic approaches implicate Int6 as a tissue-specific modulator of MEK-ERK signaling. We find that Int6 is required for normal expression of MEK1 protein in human cells, and for Erk signaling in zebrafish embryos. Loss of either Int6 or Mek signaling causes defects in craniofacial development, and Int6 and Erk-signaling have overlapping domains of tissue expression. SIGNIFICANCE: Our results provide new insight into the physiological role of vertebrate Int6, and have implications for the treatment of human tumors displaying altered INT6 expression

    Implications from a Network-Based Topological Analysis of Ubiquitin Unfolding Simulations

    Get PDF
    BACKGROUND: The architectural organization of protein structures has been the focus of intense research since it can hopefully lead to an understanding of how proteins fold. In earlier works we had attempted to identify the inherent structural organization in proteins through a study of protein topology. We obtained a modular partitioning of protein structures with the modules correlating well with experimental evidence of early folding units or "foldons". Residues that connect different modules were shown to be those that were protected during the transition phase of folding. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we follow the topological path of ubiquitin through molecular dynamics unfolding simulations. We observed that the use of recurrence quantification analysis (RQA) could lead to the identification of the transition state during unfolding. Additionally, our earlier contention that the modules uncovered through our graph partitioning approach correlated well with early folding units was vindicated through our simulations. Moreover, residues identified from native structure as connector hubs and which had been shown to be those that were protected during the transition phase of folding were indeed more stable (less flexible) well beyond the transition state. Further analysis of the topological pathway suggests that the all pairs shortest path in a protein is minimized during folding. CONCLUSIONS: We observed that treating a protein native structure as a network by having amino acid residues as nodes and the non-covalent interactions among them as links allows for the rationalization of many aspects of the folding process. The possibility to derive this information directly from 3D structure opens the way to the prediction of important residues in proteins, while the confirmation of the minimization of APSP for folding allows for the establishment of a potentially useful proxy for kinetic optimality in the validation of sequence-structure predictions

    ATP-Dependent Infra-Slow (<0.1 Hz) Oscillations in Thalamic Networks

    Get PDF
    An increasing number of EEG and resting state fMRI studies in both humans and animals indicate that spontaneous low frequency fluctuations in cerebral activity at <0.1 Hz (infra-slow oscillations, ISOs) represent a fundamental component of brain functioning, being known to correlate with faster neuronal ensemble oscillations, regulate behavioural performance and influence seizure susceptibility. Although these oscillations have been commonly indicated to involve the thalamus their basic cellular mechanisms remain poorly understood. Here we show that various nuclei in the dorsal thalamus in vitro can express a robust ISO at ∼0.005–0.1 Hz that is greatly facilitated by activating metabotropic glutamate receptors (mGluRs) and/or Ach receptors (AchRs). This ISO is a neuronal population phenomenon which modulates faster gap junction (GJ)-dependent network oscillations, and can underlie epileptic activity when AchRs or mGluRs are stimulated excessively. In individual thalamocortical neurons the ISO is primarily shaped by rhythmic, long-lasting hyperpolarizing potentials which reflect the activation of A1 receptors, by ATP-derived adenosine, and subsequent opening of Ba2+-sensitive K+ channels. We argue that this ISO has a likely non-neuronal origin and may contribute to shaping ISOs in the intact brain

    Long-Term Cold Acclimation Extends Survival Time at 0°C and Modifies the Metabolomic Profiles of the Larvae of the Fruit Fly Drosophila melanogaster

    Get PDF
    Drosophila melanogaster is a chill-susceptible insect. Previous studies on this fly focused on acute direct chilling injury during cold shock and showed that lower lethal temperature (LLT, approximately -5°C) exhibits relatively low plasticity and that acclimations, both rapid cold hardening (RCH) and long-term cold acclimation, shift the LLT by only a few degrees at the maximum.We found that long-term cold acclimation considerably improved cold tolerance in fully grown third-instar larvae of D. melanogaster. A comparison of the larvae acclimated at constant 25°C with those acclimated at constant 15°C followed by constant 6°C for 2 d (15°C→6°C) showed that long-term cold acclimation extended the lethal time for 50% of the population (Lt(50)) during exposure to constant 0°C as much as 630-fold (from 0.137 h to 86.658 h). Such marked physiological plasticity in Lt(50) (in contrast to LLT) suggested that chronic indirect chilling injury at 0°C differs from that caused by cold shock. Long-term cold acclimation modified the metabolomic profiles of the larvae. Accumulations of proline (up to 17.7 mM) and trehalose (up to 36.5 mM) were the two most prominent responses. In addition, restructuring of the glycerophospholipid composition of biological membranes was observed. The relative proportion of glycerophosphoethanolamines (especially those with linoleic acid at the sn-2 position) increased at the expense of glycerophosphocholines.Third-instar larvae of D. melanogaster improved their cold tolerance in response to long-term cold acclimation and showed metabolic potential for the accumulation of proline and trehalose and for membrane restructuring

    Functional Brain Networks Develop from a “Local to Distributed” Organization

    Get PDF
    The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways

    The epidemiology of bacterial vaginosis in relation to sexual behaviour

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial vaginosis (BV) has been most consistently linked to sexual behaviour, and the epidemiological profile of BV mirrors that of established sexually transmitted infections (STIs). It remains a matter of debate however whether BV pathogenesis does actually involve sexual transmission of pathogenic micro-organisms from men to women. We therefore made a critical appraisal of the literature on BV in relation to sexual behaviour.</p> <p>Discussion</p> <p><it>G. vaginalis </it>carriage and BV occurs rarely with children, but has been observed among adolescent, even sexually non-experienced girls, contradicting that sexual transmission is a necessary prerequisite to disease acquisition. <it>G. vaginalis </it>carriage is enhanced by penetrative sexual contact but also by non-penetrative digito-genital contact and oral sex, again indicating that sex <it>per se</it>, but not necessarily coital transmission is involved. Several observations also point at female-to-male rather than at male-to-female transmission of <it>G. vaginalis</it>, presumably explaining the high concordance rates of <it>G. vaginalis </it>carriage among couples. Male antibiotic treatment has not been found to protect against BV, condom use is slightly protective, whereas male circumcision might protect against BV. BV is also common among women-who-have-sex-with-women and this relates at least in part to non-coital sexual behaviours. Though male-to-female transmission cannot be ruled out, overall there is little evidence that BV acts as an STD. Rather, we suggest BV may be considered a sexually enhanced disease (SED), with frequency of intercourse being a critical factor. This may relate to two distinct pathogenetic mechanisms: (1) in case of unprotected intercourse alkalinisation of the vaginal niche enhances a shift from lactobacilli-dominated microflora to a BV-like type of microflora and (2) in case of unprotected and protected intercourse mechanical transfer of perineal enteric bacteria is enhanced by coitus. A similar mechanism of mechanical transfer may explain the consistent link between non-coital sexual acts and BV. Similar observations supporting the SED pathogenetic model have been made for vaginal candidiasis and for urinary tract infection.</p> <p>Summary</p> <p>Though male-to-female transmission cannot be ruled out, overall there is incomplete evidence that BV acts as an STI. We believe however that BV may be considered a <it>sexually enhanced disease</it>, with frequency of intercourse being a critical factor.</p

    The controversy of patellar resurfacing in total knee arthroplasty: Ibisne in medio tutissimus?

    Get PDF
    Early arthroplasty designs were associated with a high level of anterior knee pain as they failed to cater for the patello-femoral joint. Patellar resurfacing was heralded as the saviour safeguarding patient satisfaction and success but opinion on its necessity has since deeply divided the scientific community and has become synonymous to topics of religion or politics. Opponents of resurfacing contend that the native patella provides better patellar tracking, improved clinical function, and avoids implant-related complications, whilst proponents argue that patients have less pain, are overall more satisfied, and avert the need for secondary resurfacing. The question remains whether complications associated with patellar resurfacing including those arising from future component revision outweigh the somewhat increased incidence of anterior knee pain recorded in unresurfaced patients. The current scientific literature, which is often affected by methodological limitations and observer bias, remains confusing as it provides evidence in support of both sides of the argument, whilst blinded satisfaction studies comparing resurfaced and non-resurfaced knees generally reveal equivalent results. Even national arthroplasty register data show wide variations in the proportion of patellar resurfacing between countries that cannot be explained by cultural differences alone. Advocates who always resurface or never resurface indiscriminately expose the patella to a random choice. Selective resurfacing offers a compromise by providing a decision algorithm based on a propensity for improved clinical success, whilst avoiding potential complications associated with unnecessary resurfacing. Evidence regarding the validity of selection criteria, however, is missing, and the decision when to resurface is often based on intuitive reasoning. Our lack of understanding why, irrespective of pre-operative symptoms and patellar resurfacing, some patients may suffer pain following TKA and others may not have so far stifled our efforts to make the strategy of selective resurfacing succeed. We should hence devote our efforts in defining predictive criteria and indicators that will enable us to reliably identify those individuals who might benefit from a resurfacing procedure. Level of evidence V

    Measurement of VH, H → b b ¯ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Cross-sections of associated production of a Higgs boson decaying into bottom-quark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the `simplified template cross-section' framework. The results are obtained using 79.8 fb-1 of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons
    corecore