171 research outputs found

    Recycling cellular downlink energy for overlay self-sustainable IoT networks

    Get PDF
    This paper investigates the self-sustainability of an overlay Internet of Things (IoT) network that relies on harvest- ing energy from a downlink cellular network. Using stochastic geometry and queueing theory, we develop a spatiotemporal model to derive the steady state distribution of the number of packets in the bu ff ers and energy levels in the batteries of IoT devices given that the IoT and cellular communications are allocated disjoint spectrum. Particularly, each IoT device is modeled via a two-dimensional discrete-time Markov Chain (DTMC) that jointly tracks the evolution of data bu ff er and energy battery. In this context, stochastic geometry is used to derive the energy generation at the batteries and the packet transmission probability from bu ff ers taking into account the mutual interference from other active IoT devices. To this end, we show the Pareto-Frontiers of the sustainability region, which defines the network parameters that ensure stable network operation and finite packet delay. The results provide several insights to design self-sustainable IoT networks. Index Terms —Spatiotemporal models, stochastic geometry, queuing theory, energy harvesting, packet transmission success probability, two-dimensional discrete-time Markov chain, sta- bility conditions

    Impact of Hydroxychloroquine on Fructose-induced Metabolic Syndrome in Rats: Promising Protective Effect

    Get PDF
    BACKGROUND: Hydroxychloroquine (HCQ) is used in the treatment of malaria and rheumatoid arthritis for a long time. Its effects on inflammation and immune modulation were noted. AIM: This study aims to investigate the effects of HCQ in fructose-induced metabolic syndrome and to explore its possible mechanisms. METHODS AND MATERIALS: Sixty male Sprague-Dawley rats were divided into Group I (negative control), Group II fed on high-fructose diet, and Group III fed on high fructose and subdivided into Group III-a (HCQ 50 mg/kg), Group III-b (HCQ 100 mg/kg), Group III-c (HCQ 200 mg/kg), and Group III-d (metformin 100 mg/kg). Body weight, blood glucose, liver enzymes, and lipid profile were measured. Insulin level, homeostatic model assessment (HOMA), soluble-intercellular adhesion molecule, and vascular cell adhesion molecule were assayed. Tumor necrosis factor (TNF)-α, adipokines (leptin, resistin, and adiponectin), and histological examination of pancreas were assessed. RESULTS: HCQ induces good effects on lipid profile and improves significantly HOMA, endothelial stress markers, and adiponectin, and reduces leptin and TNF-α levels. In addition, significant improvement in structural changes was noted in pancreas with different doses of HCQ. CONCLUSION: Favorable effects of HCQ in fructose-induced metabolic syndrome are promising and can be used early in those at risk of diabetes

    Multi-point fairness in resource allocation for C-RAN downlink CoMP transmission

    Get PDF

    Effectiveness of Food Safety and Hygiene Training Program for Hospital Food Services Staff in Holly Makkah

    Get PDF
    Foodborne diseases have been increasing in recent years, with a greater impact on the health and economy of developing countries. Food can be a potential source of infection and disease, right from the point of procurement to the point of consumption. It is more likely in the food service establishments where mass food is prepared. Hygienic practices at procuring, preparing and serving are essential. Food handlers specially play a major role here. The aim of this study was to assess the knowledge, attitudes and practices of food service staff regarding food safety and hygiene, before and after food safety education program in hospital. A cross-sectional design was used to assess the knowledge, attitudes and practices about food safety of the food services staff for the purpose of the study before and after a nutrition education program in a systemic sample of a hospital at holy Makkah were assessment by means of a questionnaire survey.After obtaining approval, the questionnaire was addressed to all food services staff. The study included 107 food handlers. Sixty of them (56.1%) were males and 47 were females (43.9%). Their age ranged between 22 and 56 years. Almost half of them (49%) were at least university graduated. Most of them (80.4%) were workers whereas (13.7%) were dieticians. Data analysis was carried out using the Statistical Package of the Social Science (SPSS) version 20. Overall mean percentage of knowledge before an educational intervention was 56.1% and after an intervention it became 77.7%. This difference was statistically significant, p<0.001. It is concluded that the overall knowledge, attitudes and practices scores were higher regarding personnel hygiene, however, it need reconsideration regarding food-borne diseases and sanitation  Since the education, training of those handling food would improve the status of food hygiene knowledge. Keywords: Food Safety, Hygiene, Training Program, Hospital Food Services and Services Staff

    Design, synthesis, antitumor activity and molecular docking study of novel 5-deazaalloxazine analogs

    Get PDF
    open access articleProtein tyrosine kinases (PTKs) are the most potential therapeutic targets for cancer. Herein, we present a sound rationale for synthesis of a series of novel 2-(methylthio), 2-(substituted alkylamino), 2-(heterocyclic substituted), 2-amino, 2,4-dioxo and 2-deoxo-5-deazaalloxazine derivatives by applying structure-based drug design (SBDD) using AutoDock 4.2. Their antitumor activities against human CCRF-HSB-2, KB, MCF-7 and HeLa have been investigated in vitro. Many 5-deazaalloxazine analogs revealed high selective activities against MCF-7 tumor cell lines (IC50: 0.17–2.17 µM) over HeLa tumor cell lines (IC50 > 100 µM). Protein kinase profiling revealed that compound 3h induced multi- targets kinase inhibition including −43% against (FAK), −40% against (CDKI) and −36% against (SCR). Moreover, the Annexin-V/PI apoptotic assay elucidate that compound 3h showed 33% and potentially 140% increase in early and late apoptosis to MCF-7 cells respectively, compared to the control. The structure-activity relationship (SAR) and molecular docking study using PTK as a target enzyme for the synthesized 7-deazaalloaxazine derivatives were investigated as potential antitumor agents. The AutoDock binding affinities of the 5deazaalloxazine analogs into c-kit PTK (PDB code: 1t46) revealed reasonable correlations between their AutoDock binding free energy and IC50

    Design, synthesis, and antitumor efficacy of novel 5-deazaflavin derivatives backed by kinase screening docking and ADME studies

    Get PDF
    open access articleNovel 5-deazaflavins were designed as potential anticancer candidates. Compounds 4j, 4k, 5b, 5i, and 9f demonstrated high cytotoxicity against MCF-7 cell line with IC50 of 0.5–190nM. Compounds 8c and 9g showed preferential activity against Hela cells (IC50: 1.69 and 1.52 μM respectively). However, compound 5d showed notable potency against MCF-7 and Hela cell lines of 0.1 nM and 1.26 μM respectively. Kinase profiling for 4e showed the highest inhibition against a 20 kinase panel. Additionally, ADME prediction studies exhibited that compounds 4j, 5d, 5f, and 9f have drug-likeness criteria to be considered promising antitumor agents deserving of further investigation. SAR study showed that substitutions with 2-benzylidene hydra zino have a better fitting into PTK with enhanced antiproliferative potency. Noteworthy, the incorporation of hydrazino or ethanolamine moieties at position 2 along with small alkyl or phenyl at N-10, respectively revealed an extraordinary potency against MCF-7 cells with IC50 values in the nanomolar range

    Anisotropic pH-Responsive Hydrogels Containing Soft or Hard Rod-Like Particles Assembled Using Low Shear

    Get PDF
    A simple and versatile low-shear approach for assembling hydrogels containing aligned rod-like particles (RLPs) that are birefringent and exhibit pH-triggered anisotropic swelling is developed. Anisotropic composite hydrogels are prepared by applying low shear (0.1 s–1) to mixtures of pH-responsive nanogels (NGs) and RLPs. The NGs, which contained high methacrylic acid contents, acted as both shear transfer vehicles and macro-cross-linkers for anisotropic gel formation. Three model RLP systems are investigated: (i) soft triblock copolymer worms, (ii) stiff self-assembled β-sheet peptide fibers, and (iii) ultrahigh modulus nanocrystalline cellulose fibers. RLP alignment was confirmed using polarized light imaging, atomic force microscopy, and small-angle X-ray scattering as well as modulus and anisotropic swelling experiments. Unexpectedly, the composite gel containing the soft copolymer worms showed the most pronounced anisotropy swelling. The copolymer worms enabled higher RLP loadings than was possible for the stiffer RLPs. For fixed RLP loading, the extent of anisotropic swelling increased with intra-RLP bonding strength. The facile and versatile approach to anisotropic gel construction demonstrated herein is expected to enable new applications for strain sensing or biomaterials for soft tissue repair

    RNA extraction from self-assembling peptide hydrogels to allow qPCR analysis of encapsulated cells

    Get PDF
    Self-assembling peptide hydrogels offer a novel 3-dimensional platform for many applications in cell culture and tissue engineering but are not compatible with current methods of RNA isolation; owing to interactions between RNA and the biomaterial. This study investigates the use of two techniques based on two different basic extraction principles: solution-based extraction and direct solid-state binding of RNA respectively, to extract RNA from cells encapsulated in four β-sheet forming self-assembling peptide hydrogels with varying net positive charge. RNA-peptide fibril interactions, rather than RNA-peptide molecular complexing, were found to interfere with the extraction process resulting in low yields. A column-based approach relying on RNA-specific binding was shown to be more suited to extracting RNA with higher purity from these peptide hydrogels owing to its reliance on strong specific RNA binding interactions which compete directly with RNA-peptide fibril interactions. In order to reduce the amount of fibrils present and improve RNA yields a broad spectrum enzyme solution—pronase—was used to partially digest the hydrogels before RNA extraction. This pre-treatment was shown to significantly increase the yield of RNA extracted, allowing downstream RT-qPCR to be performed

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Mechanical and Assembly Units of Viral Capsids Identified via Quasi-Rigid Domain Decomposition

    Get PDF
    Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV) for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available
    corecore