
Recycling Cellular Downlink Energy for Overlay
Self-Sustainable IoT Networks

Fatma Benkhelifa*, Hesham ElSawy**, Julie A. McCann*, and Mohamed-Slim Alouini***
* Imperial College London, London, UK

** King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia
*** King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah Province, Saudi Arabia

{f.benkhelifa, j.mccann}@imperial.ac.uk, {elsawyhesham}@gmail.com, {slim.alouini}@kaust.edu.sa

Abstract—This paper investigates the self-sustainability of an
overlay Internet of Things (IoT) network that relies on harvest-
ing energy from a downlink cellular network. Using stochastic
geometry and queueing theory, we develop a spatiotemporal
model to derive the steady state distribution of the number
of packets in the buffers and energy levels in the batteries of
IoT devices given that the IoT and cellular communications
are allocated disjoint spectrum. Particularly, each IoT device
is modeled via a two-dimensional discrete-time Markov Chain
(DTMC) that jointly tracks the evolution of data buffer and
energy battery. In this context, stochastic geometry is used to
derive the energy generation at the batteries and the packet
transmission probability from buffers taking into account the
mutual interference from other active IoT devices. To this end,
we show the Pareto-Frontiers of the sustainability region, which
defines the network parameters that ensure stable network
operation and finite packet delay. The results provide several
insights to design self-sustainable IoT networks.

Index Terms—Spatiotemporal models, stochastic geometry,
queuing theory, energy harvesting, packet transmission success
probability, two-dimensional discrete-time Markov chain, sta-
bility conditions.

I. Introduction

The Internet of Things (IoT) is the paradigm that bridges
the physical and cyber worlds such that everything and any-
thing will be connected to the Internet. Such ubiquitous and
massive connectivity has unlimited potentials to advance our
life (e.g., smart cities, automated diagnostics, autonomous
deriving, smart agriculture, public safety, etc.) [1]. Realizing
the IoT paradigm brings potentially billions of new devices
(e.g., sensors, actuators, machines, robots, vehicles, etc.) to
the already congested wireless spectrum. In addition to the
spectrum scarcity problem, the IoT intrinsic features impose
several new challenges to conventional wireless networks.
For instance, the IoT involves a multitude heterogeneity
of devices with diverse quality of service requirements.
Recharging/changing batteries of massive numbers of de-
vices, that are distributed over a large scale area, represents
another acute challenge to sustain the IoT operation. Hence,
revolutionary wireless technologies are required to address
the unprecedented challenges that arise in IoT networks [2],
[3].

From the industrial perspective, several new technologies
and standards are being developed to accommodate the
potential surge of IoT traffic. For instance, the latest 3rd
Generation Partnership Project (3GPP) amendments propose

Narrowband IoT (NB-IoT) and machine type communication
(LTE-MTC) to accommodate IoT traffic within cellular net-
works [4]. Furthermore, several new low power wide area
networks (LPWANs) are being developed and tailored for
the IoT use cases such as Sigfox, Weightless and LoRa [3],
[5]. The 3GPP amendments and the LPWAN account for the
intrinsic features of the IoT such as massive density, sporadic
traffic, multitude heterogeneity, and high-energy efficiency.
At the device level, transceivers with energy harvesting
capabilities are being developed [6], which circumvent the
overwhelming administrative overhead of sustaining the IoT
network.

In parallel to the industrial progress, the research commu-
nity is developing rigorous mathematical paradigms to char-
acterize, design, and operate IoT networks. In this context,
stochastic geometry (see [7] for a tutorial) is indispensable
when characterizing the performance of interference limited
IoT networks [8]–[10]. However, stand-alone stochastic ge-
ometry fails to account for the sporadic traffic patterns of
the IoT devices. Recently, several studies have integrated
stochastic geometry and queueing theory to characterize the
network performance while accounting for the spatiotempo-
ral traffic generation. For instance, the work in [11] char-
acterizes the delay and the maximum spatiotemporal traffic
that uplink cellular networks can accommodate. The work
in [12] studies the delay in downlink cellular networks with
unsaturated traffic. The work in [13] studies the percentile
based performance (e.g., transmissions success probability
and delay) for a static ad hoc IoT network. However, the
studies in [11]–[13] assume that all devices have perpetual
energy sources. The problem of energy scarcity and harvest-
ing for large-scale networks is considered in [14]–[17] via
unsaturated energy queues. However, the studies in [14]–[17]
assume saturated data buffers for all devices. Hence, none of
the aforementioned works consider unsaturated data buffers
and energy queues to study the self-sustainability of large
scale IoT networks.

This paper proposes a novel spatiotemporal mathematical
model, based on stochastic geometry and queueing theory,
to characterize and design self-sustainable IoT networks.
We consider an IoT network modeled via a Poisson bipolar
process (PBP), where each device is equipped with a data
buffer and an energy queue (i.e., battery). Data is generated,
and stored for transmission, at each buffer according to



an independent and identically distributed (i.i.d.) geometric
distribution. Batteries are replenished by scavenging radio
frequency (RF)-energy from a downlink cellular network,
where the base-stations (BSs) are modeled via an indepen-
dent Poisson point process (PPP). A transmission attempt
occurs from an IoT device when the data buffer is non-
empty and the harvested energy in the battery is sufficient
for transmission. The transmission attempt is successful if
the signal-to-interference ratio (SIR) at the receiver is above
a certain threshold. Hence, each bipolar link is modeled
via a two-dimensional discrete-time Markov Chain (DTMC)
and the IoT network is considered as a network of spatially
interacting DTMCs. To this end, we obtain the packet trans-
mission success probability at the network steady state and
characterize the self-sustainability region of the network.1

The main contributions in this paper are summarized below:
• To the best knowledge of the authors, this paper presents

the first mathematical model that jointly accounts for the
spatiotemporal traffic generation, the energy harvesting
problem, and mutual interference between devices in a
large scale IoT network.

• We show the Pareto-frontiers of the sustainability re-
gion, which characterize the maximum spatiotemporal
traffic that an IoT network can accommodate via recy-
cling the RF-power of a cellular network with a given
BS density.

• We illustrate the spectrum scarcity and energy scarcity
tradeoff within self-sustainable IoT networks.

II. SystemModel

For the sake of organized treatise, we discuss the spatial,
temporal, and energy harvesting models in separate sections.

A. Spatial and Propagation Models

We consider an IoT network that is spatially distributed
in R2 according to a homogeneous PBP with spatial inten-
sity λD. Hence, the IoT network is constituted from IoT
transmitter-receiver pairs, denoted as bipolar links, where
each link has a fixed length of r0 and a uniform random
orientation ε ∈ [0, 2π]. According to the PBP, the IoT
transmitting devices constitute a PPP, denoted as ΦD =

{y j : j = 1, 2, . . . }, where y j ∈ R2 denotes the location of
the j’th IoT transmitter. The IoT network coexists with a
cellular network that is spatially distributed according to an
independent PPP, denoted as ΦB = {zi : i = 1, 2, . . . }, with
spatial intensity λB.

We consider a Rayleigh fading environment with i.i.d.
unit variance channels. The channel gains between the BSs
and the IoT devices are denoted by h and the channel gains
between IoT devices are denoted by g. All channels gains are
assumed to be independent of the spatial locations. We utilize
a power-law path loss model such that the signal power
decays at the rate r−α, where r is the propagation distance
and α is the path loss exponent. The path loss exponent
between IoT devices is denoted as αD, which is generally

1The self-sustainability region defines all network parameters that ensure
stable data buffers and finite transmission delay across the network.

different from the path loss exponent between a BS and an
IoT device, denoted as αB.

Each BS becomes active with probability b independently
of other BSs, where active BSs transmit with a fixed power
PB.2 The IoT network operates at a dedicated spectrum that
is universally reused by all the IoT devices. Hence, the IoT
devices mutually interfere with each other but there is no
interference between the cellular and IoT networks. Each
IoT transmitter inverts its path-loss towards its associated
receiver such that the useful average received power at each
IoT receiver is maintained at ρD. Since the distance between
the IoT transmitters and their intended IoT receivers is fixed,
the required transmit power PD at each IoT transmitter is
given by PD = ρDrαD

0 .

B. Temporal and Queuing Model

We consider a discrete-time slotted system with slot
duration of Ts seconds. Each IoT transmitter is equipped
with a data buffer. The data packets are generated at each
IoT device according to an i.i.d. geometric distribution with
parameter a ∈ [0, 1]. For each device, the generated packets
are stored in the buffer to be transmitted over the wireless
channel to the intended receiver according to the first-in first-
out (FIFO) discipline. Packets are transmitted one-by-one
and a packet will be discarded from the buffer after being
successfully transmitted to the intended receiver.

C. Energy Harvesting Model

Hence, all IoT transmitters rely on scavenging the down-
link RF-energy from the cellular network to replenish their
batteries. Hence, each IoT transmitter is equipped with an
energy receiver and rechargeable battery (i.e., energy queue)
for energy harvesting. The energy receiver is tuned to the
downlink cellular frequency, which is different from the IoT
dedicated frequency. As such, the IoT transmitters harvest
only from the cellular network and are not influenced by the
strong downlink interference.

The IoT transmitters employ the well-known “harvest-
then-transmit” protocol. All IoT devices are equipped with
a single antenna switching between the energy receiver and
information transmitter. Hence, the IoT transmitter should
keep harvesting and storing energy in its battery (i.e., en-
ergy queue) until the stored energy is sufficient to achieve
the required power of ρD at its associated receiver. Once
the energy harvesting phase is completed, the IoT device
switches to the transmission mode and transmit one packet
from its data buffer if a packet exists. We denote the activity
probability, i.e., the probability of having non-empty buffer
and sufficient energy for transmission, with d. Without loss
of generality, we assume a finite energy queue size that is
sufficient for transmitting one packet.3 Once a transmission
attempt occurs, the energy is depleted from the battery and
the device returns to the harvesting phase.

2The activity factor b reflects the time-varying user loads and traffic per
BS.

3Such assumption enables us to study the interplay between the energy
scarcity and spectrum scarcity problems in energy harvesting IoT networks.



D. Methodology of Analysis

In many IoT use cases (e.g., smart parking meters),
the IoT devices are fixed. Furthermore, in case of nomadic
and low-mobility IoT scenarios, the fading and device/BS
activity vary at much shorter time scale when compared to
the time required to make tangible location displacement for
IoT devices. Hence, it is reasonable to assume an arbitrary,
but static, cellular and IoT networks realization where only
fading and devices/BSs activity change over time. In such
static network setting, each IoT device may have its own
location dependent performance [13], [18], [19] in terms of
harvesting and transmission success probability. However,
the activity probabilities b and d mitigate such location
dependent discrepancies (i.e., decrease the variance) across
the IoT devices performance [11], [18]. Exploiting this fact,
we use the following approximation:

Approximation 1: The spatially averaged harvesting prob-
abilities and transmission success probability of a typical IoT
device is representative to all IoT devices in the network.

Remark 1: The effect of Approximation 1 diminishes as b
and d decrease as different realization of, respectively, active
BSs from ΦB and active devices from ΦD appear in each
time slot. Note that the foreseen ultra-densification of cellular
networks will dramatically decrease the load served by each
BS and will lead to small activity factor b. Furthermore, d
is already small in the depicted network model due to the
sporadic pattern of the IoT traffic along with the employed
“harvest-then-transmit” scheme.

Remark 2: The cellular network is not utilized for
information transfer and is used for energy harvesting only.
Hence, the aggregate downlink power at each time slot comes
from the independently thinned PPP ΦB, with intensity bλB,
and the nearest BS to the IoT device is not necessarily
contributing to the harvested energy. Hence, the energy
harvesting variance among the devices does not saturate
when decreasing b as in the case of success probability in
downlink information transfer shown in [18].

Remark 3: Approximation 1 becomes exact in high
mobility scenarios [19].

Remark 4: The analysis in this paper can be extended to
the case of static network with high b and/or d by following
the same methodology in [13], which is postponed to future
extension.
For simplicity, we discretize the battery into M energy levels

of equal amount ω = PD/M. Let p = [p0, pm, · · · , pM],
where pm, 0 ≤ m ≤ M, is the spatially averaged probability
that the harvested energy is sufficient for replenishing m
battery levels in one time slot. Furthermore, let pc denote the
spatially averaged probability of successful packet transmis-
sion and let (·̄) = (1 − ·) denote the probability complement
operator. Exploiting Approximation 1, the microscopic (i.e.,
individual) behavior of any IoT device can be modeled via
the two-dimensional DTMC shown in Fig. 1 to track the
temporal evolution of the data (levels) and battery (phases).
As shown in Fig. 1, the battery may recharge m levels per
time slot with probability pm. On the other hand, a single-
step transition can occur between buffer states as only one
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āpc
apc + āp̄c
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āp1āp1
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Figure 1. Two-dimensional discrete-time Markov chain modelling the
evolution of the data buffer and the battery for each IoT device.

packet can be generated and/or transmitted per time slot.
Note that a packet departure can only take place from the
phase M such that the stored energy is sufficient for a
transmission attempt. After each transmission attempt, the
battery is depleted and the DTMC goes to phase m = 0 to
reset the energy harvesting process. Note that while all IoT
devices are represented via the same DTMC model, different
IoT devices can have different buffer and battery states at a
given time slot.

While the DTMC in Fig. 1 describes the microscopic
behavior of an IoT device, the parameters p and pc are
functions of the macroscopic (i.e., network wide) mutual
interactions among all IoT devices and BSs. Particularly, the
harvesting probability vector p is determined according to
the distribution of the aggregate downlink power at the IoT
transmitter from all active BSs. Furthermore, the transmis-
sion success probability pc is function of the interference
power received by the IoT receiver from all other active
IoT transmitters. Hence, stochastic geometry is employed to
find the parameters p and pc in Section III-A and queueing
theory is utilized to find the steady state distribution vector
of the DTMC in Fig. 1 in Section III-B. Note that the
stochastic geometry analysis and queueing theory analysis
are interdependent because i) finding pc requires the intensity
of mutually interfering IoT devices dλD; and ii) obtaining d
(i.e., from steady state probability of the DTMC) requires
pc. Such interdependence is solved via an iterative solutions
in Section III-C based on the fixed point theorem.

III. SpatiotemporalModel
A. Stochastic Geometry Analysis

In this section, we use stochastic geometry to derive
the spatially averaged transmission success probability pc

and the energy harvesting probability vector p. Without
loss of generality, we focus on a test device located at an
arbitrary origin, which becomes the typical device under
spatial average.



1) Packet Transmission: Let Φ̃D be the point process of
mutually interfering IoT devices and let the IoT receiver of
the test bipolar IoT link be located at an arbitrary origin.
A successful transmission occurs at the test link if the SIR
at the test receiver is above a certain detection threshold θ.
Hence, the transmission success probability is given by

pc (θ) = P

 ρDg0

PD
∑

y j∈Φ̃D\y0
g j‖y j‖

−αD
> θ

 , (1)

where ‖ · ‖ is the Euclidean norm. The transmission success
probability is characterized via the following theorem.

Theorem 1: The packet transmission success probability
for a typical IoT link is given by

pc (θ) = exp

− 2π2dλDr2
0

αDsin
(

2π
αD

)θ 2
αD

 . (2)

Proof: The transmission success probability in (1) can
be expressed, using the complementary density function
(CDF) of exponential distribution with unit mean, as

pc (θ) = Ey j,g j

exp

− θ

ρD
PD

∑
y j∈Φ̃D\y0

g j‖y j‖
−αD


 = LD

(
θ

ρD

)
,

(3)

where LD (·) is the Laplace transform (LT) of the aggregate
interference derived in Appendix A in (22), which proves
(2).

2) Energy Harvesting: For a given time slot, let Φ̃B be
the point process of simultaneously active BSs. Hence, the
harvested power at a test IoT transmitter located at the origin
is given by

PH = ζPB

∑
zi∈Φ̃B

hi‖zi‖
−αB , (4)

where ζ ∈ [0, 1] is the harvesting efficiency. The harvested
power PH is characterized in the following lemma:

Theorem 2: The CDF of the harvested power in a generic
time slot is given by

FPH (x) = 1 −
αB

2π

∞∫
0

exp

−x
 ζ 2

αB t
κ0


αB
2

− t cos
(

2π
αB

) sin
(
t sin

(
2π
αB

))
t

dt (5)

(αB=4)
= erfc

(
π2δ

4
√

x

)
, (6)

where κ0 =
2π2bλBP

2
αB
B

αB sin
(

2π
αB

) , δ = bλB
√
ζPB, erf (z) = 2

√
π

∫ z
0 e−t2

dt

is the error function and erfc (·) = 1 − erf (·) is the comple-
mentary error function.

Proof: See Appendix B.
Given that the battery is discretized into M equal levels,

the probability of harvesting 0 ≤ m ≤ M levels of energy is

pm =


FPH ((m + 1)ω) − FPH (mω) , if m = 0, . . . ,M − 1,
1 − FPH (Mω) , if m = M,
0, otherwise.

(7)

For αB = 4, we have the following corollary:
Corollary 1: For αB = 4, the harvesting probabilities pm

is given by

pm =
αB=4


erf

(
π2δ

4
√

mω

)
− erf

(
π2δ

4
√

(m+1)ω

)
, if m = 0, . . . ,M − 1,

erf
(

π2δ
4
√

PD

)
, if m = M.

(8)

Proof: Follows from Theorem 2 and (7).

B. Queueing Theory Analysis

The DTMC in Fig. 1 represents a quasi birth death
process (QBD) with geometric (Geo) arrival and phase (PH)
type departure, denoted as Geo/Ph/1 QBD system [20]. That
is, the queue departure process (i.e., transmission success
probability) can be represented via an absorbing Markov
chain with the transient matrix

S =



p0 p1 . . . pM−1 1 −
∑M−1

m=0 pm

0 p0 . . . pM−2 1 −
∑M−2

m=0 pm
...

. . .
. . .

...
...

0 . . . 0 p0 1 − p0
pc . . . . . . 0 0


. (9)

The matrix S is an (M+1)×(M+1) sub-stochastic matrix that
models the harvesting process until one successful packet
departure. Since a transmission attempt can only take place
when the battery is full, then s = e − Se = [0, 0, · · · , pc]T ,
where e is a column vector of ones with the proper length.
Since the batter is completely depleted with each transmis-
sion, the initialization vector for the PH type process is
β = [1, 0, 0, · · · , 0]. When the IoT device has an empty
buffer, it harvests energy until full battery and waits until a
packet arrives. Hence, the energy harvesting matrix at level-0
is a stochastic matrix given by

S0 =



p0 p1 . . . pM−1 1 −
∑M−1

i=0 pi

0 p0 . . . pM−2 1 −
∑M−2

i=0 pi
...

. . .
. . .

...
...

0 . . . 0 p0 1 − p0
0 . . . . . . 0 1


. (10)

Using the PH distributions described above, the transition
matrix of the Geo/PH/1 system shown in Fig. 1 is given by

P =


B C
A2 A1 A0

A2 A1 A0
. . .

. . .
. . .

 , (11)

where B = aS0 and C = aS0 are sub-stochastic matrices that
contain the transition probabilities within the idle state and
from the idle-to-level 1 (i.e., first packet arrival), respectively.
The sub-stochastic matrices A0 = aS, A1 = asβ + aS, and
A2 = asβ contain the buffer state transitions probabilities
when going up one level, staying within the same level, and
going down one level, respectively.

Let x =
[
x0 x1 x2 . . .

]
, where xi =

[
xi,0 . . . xi,M

]
denotes the probability of having i packets in the data buffer



and xi,m is the probability of having i packets and m energy
levels. The steady state vector x is obtained by solving

x = xP and x1 = 1 (12)

where 1 is an infinite column vector of ones. A unique solu-
tion for the system of equations in (12) exists if the DTMC
in Fig. 1 is stable. The stability condition is characterized
as:

Lemma 1: A data buffer of an IoT device is stable if

πA2e > πA0e (13)

where π is defined as

π = eT
(
S + sβ − I + eeT

)−1
, (14)

and I is the identity matrix. Otherwise, the data buffer is
unstable and the packet delay is infinite.

Proof: According to [20], a Geo/PH/1 QBD system is
stable if πA2e > πA0e, where π is solution to

π = πA and πe = 1, (15)

where A = A0 + A1 + A2. Substituting for A0 = aS, A1 =

asβ + aS, and A2 = asβ and using [21, Lemma 1] to solve
(15), Lemma 1 is proved.

The subsequent analysis depends on the output of the
stability condition in (13) as shown in the sequel.

1) Stable system: If the condition in (13) is satisfied, the
solution for the DTMC in (12) is given as:

Theorem 3: The joint steady state probabilities for the
number of data packet in the buffer and energy levels in
the battery of a typical IoT device is given by

xi =


ax0S0 (I − asβ − aS − Rasβ)−1 asβ (I − aS0)−1 , if i = 0,
ax0S0 (I − asβ − aS − Rasβ)−1 , if i = 1,
x1Ri−1, if i > 1

(16)

satisfying x0e + ax0S0 (I − asβ − aS − Rasβ)−1 (I − R)−1 e =

1, with R = aS (I − asβ − aS − aSeβ)−1.
Proof: Following [20], x0 and x1 are the solutions to:(

x0 x1

)
=

(
x0 x1

) ( B C
A2 A1 + RA2

)
. (17)

where R is the minimal non-negative solution of the matrix
quadratic equation R = A0 +RA1+R2 A2. Since A2 is ranked
one [20], an explicit expression of R exists as

R = A0 (I − A1 − A0eβ)−1 = aS (I − asβ − aS − aSeβ)−1 .
(18)

Note that if the system is stable in [20], R has a spectral
radius less than one and the following results are obtained
using this fact. Solving (17), x0 is solution to:

x0 = ax0S0 (I − asβ − aS − Rasβ)−1 asβ (I − aS0)−1 (19)

with the normalisation condition boldsymbolx0e +

ax0S0 (I − asβ − aS − Rasβ)−1 (I − R)−1 e = 1. Solving
for x0, x1 is deduced from (17) as in (16). For i ≥ 2, xi is
given by xi = x1Ri−1.

Let Φp =
[
Φp,0,Φp,1, . . . ,Φp,M

]
where Φp,m is the

marginal probability of having m units of energy in the
battery for a non-empty data buffer. If the system is stable,
the battery level marginal distribution is characterized in the
following corollary:

Corollary 2: The marginal distribution of the phases with
nonempty data buffers is given by

Φp =
∑
i≥1

xi = x1 (I − R)−1 . (20)

Proof: Let Φ = [Φ0,Φ1, . . . ,ΦM] where Φm be the
marginal probability of having m units of energy in the
battery. The marginal distribution of the phases is given by
Φ =

∑
i≥0 xi = x0 + x1

∑
i≥1 Ri−1 = x0 + x1 (I − R)−1. Since

Φ = x0 +Φp, we deduce (20).
Since an IoT device transmits when it has non-empty buffer
and full battery, hence, the activity probability d is

d = Φp,M . (21)

2) Unstable system: If the condition in (13) is not satis-
fied, then the DTMC is unstable and Theorem 1 and Corol-
lary 2 are no more applicable. This is because the departure
rate is less than the arrival rate [20], and hence, the buffer
accumulates infinite number of packets and the probability
of having empty buffer is nullified. Although unstable buffers
are never empty, an IoT device does not transmit unless it
has full battery. Hence, only the marginal phase distribution
for the battery is considered. This fact translates into setting
x0 = 0, which leads to Φp = eT

(
S + sβ − I + eeT

)−1
. Then,

d for unstable system is d = Φp,M .

C. Iterative Solution

As mentioned earlier, there is an interdependence between
the microscopic device behavior and the macroscopic mutual
interaction between IoT devices. Particularly, the aggregate
interference seen by the typical IoT device is function of
the activity of other IoT devices. Hence, the transmission
success probability in (2) requires the probability that an
IoT device is active, given by (21). Meanwhile, the queueing
theory analysis for computing the activity probability in (21)
requires the transmission success probability as shown in (9).
Such interdependence is solved via the iterative solution in
Algorithm 1, which converges to a unique solution by virtue
of fixed point theorem [22, Appendix B].

IV. Numerical Results

In this section, we first validate the proposed spa-
tiotemporal mathematical framework against Monte Carlo
simulations. Then, we discuss the self-sustainability of the
depicted IoT network. Unless otherwise state, the network
parameters are selected as follows: PB = 1 W, ρD = −20
dBm, r0 = 2 m, αB = 4, αD = 3, ζ = 0.6, and M = 8.

The simulations are performed over a network area of
100 × 100 m2, with a wrapped around boundaries. Two
independent realizations of a PPP and a PBP, with intensities
λB = 10−3 BSs/m2 and λD = 5 10−2 IoTs/m2, are used
respectively. The realizations of the PPP and PBP are kept



Algorithm 1: Computation of pc (θ)
Data: M, λB, λD, θ, a, ε
Compute pm from Corollary 1;
Initialisation: k = 0, x0 and Φp s.t. x0e +Φpe = 1;
while ‖Φ(k+1)

p −Φ
(k)
p ‖ ≥ ε do

Compute pc (θ) as in (2) in Theorem 1;
Compute s and S;
Check the stability condition in Lemma 1;
if Stable then

Solve x0 and x1 from Theorem 3;
Compute Φp = x1 (I − R)−1;

else
Set x0 = 0 and Φp = eT

(
S + sβ − I + eeT

)−1
;

end
Increment k;

end
return x0, Φp and pc (θ);

-20 -15 -10 -5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
a=0.1 Analysis
a=0.1 Simulation
a=0.2 Analysis
a=0.2 Simulation
Stability Point
Unstability Point

Unstable

Region

Stable

Region

Figure 2. Packet transmission success probability pc(θ) versus the detection
threshold θ in dB for a = 0.1 and a = 0.2

fixed, while fading and devices/BSs activities change over
time. Each simulation run is considered as a time slot where
i.i.d. channel gains are instantiated, packets are generated,
energy is harvested by some IoT devices and packets are
transmitted by other IoT devices (i.e., those with non-empty
buffers and full batteries). The time evolves and the transmis-
sion success probabilities and steady state statistics are traced
until steady state, where the statistics are collected. Such
process is repeated several times with different realizations
of the PPP and PBP for the sake of spatial averaging.

Fig. 2 shows the analytic (i.e., Algorithm 1) and simula-
tions for the packet transmission success probability pc(θ)
versus the detection threshold θ in dB for a = 0.1 and
a = 0.2. First, the agreement between the analytical results
and the Monte Carlo simulations validates the analysis. The
figure shows that as the detection threshold θ increases, the
packet transmission success probability decreases. Hence,
the system becomes unstable when the transmission success
probability leads to a departure rate that is less than the
arrival rate. For a = 0.2 and a = 0.1 the system becomes

Figure 3. Stability Pareto regions (a, λD) between the packet arrival
probability a in packets/sec versus the IoT network density λD in IoTs/km2

with different cellular network densities λB in BSs/km2, with θ = 10 dB.

unstable at θ ≥ −5 dB and θ ≥ 5 dB, respectively. Note
that for stable network operation, the transmission success
probability is higher for the a = 0.1 than that of the a = 0.2.
This is because more devices remain in the idle state (i.e.,
empty buffers) for the a = 0.1 scenario, which reliefs
interference and improves transmission success probability.
For unstable network operation, the probability for being
idle is zero irrespective of the actual value of a. Hence, the
transmission success probabilities for a = 0.2 and a = 0.1
match in the unstable network regime.

Fig. 3 shows the sustainability regions versus the spa-
tiotemporal IoT traffic density (a, λD) for different intensities
of cellular BSs. The shaded regions in Fig. 3 determine
all pairs of (a, λD) that lead to stable network operation.
Hence, the harvesting rate is quick enough and the mutual
interference is tolerable to maintain packet departure rates
that are greater than the packet arrival rates. Hence, all
generated packets get delivered to the intended receivers
in finite time. Operating beyond that shaded regions means
that the packet departure rates is less than the packet arrival
rate, which leads to infinite packets accumulation in the IoT
devices buffers and infinite average delay. Instability can
occur due to i) energy scarcity (i.e., slow harvesting rates),
ii) overwhelming interference (i.e., low transmission success
probability), or both i) and ii).

Several insights to extend the sustainability region for
IoT networks can be obtained from Fig. 3. For instance, the
figure shows how to cope with higher traffic arrivals a for
low and medium device densities (i.e., up to 104 device/km2).
In this region, energy scarcity is the prominent factor for
instability. Hence, increasing the BSs intensity extend the
sustainability region, for this range of device intensities, as
it improves the harvesting rates to cope with the higher traffic
arrivals. In contrast, at high devices density (beyond 105

device/km2), the interference becomes the dominant obstacle
for stability, where several retransmissions are required to
successfully deliver each packet. Hence, increasing the BS
intensity do not extend the sustainability region for higher



IoT device intensity. Interestingly, Fig. 3 shows that lower BS
intensity can accommodate higher IoT devices intensity (e.g.,
for a = 0.001). Such counterintuitive behavior is because
longer harvesting time defers IoT devices transmissions
and suppresses the aggregate interference. Hence, energy
harvesting acts as a distributed spectrum access coordination
scheme, which improves transmission success probability
and extends the sustainability region for higher IoT device
density. This highlights the importance of distributed interfer-
ence management for self-sustainable massive IoT networks.

V. Conclusion

Using stochastic geometry and queuing theory, this paper
develops a spatiotemporal mathematical model for self-
sustainable IoT networks that recycle the RF-energy of
downlink cellular network. Particularly, a two-dimensional
DTMC is used to track the time evolution of the data buffer
and the battery of each IoT device. Then, IoT network is
modeled as a network of spatially interacting DTMCs due
to the mutual interference between IoT devices. To this end,
joint probability of the number of packets in the buffers and
the energy levels in the batteries is obtained. The developed
model is then used to characterize the network parameters,
in terms of spatiotemporal IoT traffic intensity and cellular
network density, that lead to a self-sustainable IoT network.
The results identify the scenarios where the IoT network fails
to be self-sustainable due to energy scarcity, overwhelming
interference, or both.
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Appendix A
Laplace Transform of Interfering IoT Devices

Due to the independence between the channels and
the moment generating function (MGF) of the exponential
distribution, the LT of the aggregate interference in the IoT
network is given by

LD (s) = Ey j

 ∏
y j∈Φ̃D\y0

1
1 + sPD‖y j‖

−αD

 = exp

−2π2dλDP
2
αD
D

αD sin
(

2π
αD

) s
2
αD

 ,
(22)

which is obtained using the probability generating function
(PGFL) of ΦD\y0, and using [23, (4,3.241.2)].

Appendix B
Statistics of Harvested Power

First, we derive the LT of the aggregate downlink power
in a similar way as in Appendix A as LC (s) = exp

(
−κ0s

2
αB

)
.

Then, we invert LC (s) via applying the Bromwich inversion
theorem to show that the CDF of PH is given by (5). For
αB = 4, the CDF of PH is deduced using [23, 3.953.6].


