78 research outputs found
Warm H2 in the Galactic center region
We present ISO observations of several H2 pure-rotational lines (from S(0) to
S(5)) towards a sample of 16 molecular clouds distributed along the central ~
500 pc of the Galaxy. We also present C18O and 13CO J=1->0 and J=2->1
observations of these sources made with the IRAM-30m telescope. With the CO
data we derive H2 densities of 10e(3.5-4.0) cm-3 and H2 column densities of a
few 10e22 cm-2. We have corrected the H2 data for ~ 30 magnitudes of visual
extinction using a self-consistent method. In every source, we find that the H2
emission exhibits a large temperature gradient. The S(0) and S(1) lines trace
temperatures (T) of ~150 K while the S(4) and S(5) lines indicate temperatures
of ~ 600K. The warm H2 column density is typically ~1-2 x 10e22 cm-2, and is
predominantly gas with T=150 K. This is the first direct estimate of the total
column density of the warm molecular gas in the Galactic center region. These
warm H2 column densities represent a fraction of ~ 30 % of the gas traced by
the CO isotopes emission. The cooling by H2 in the warm component is comparable
to that by CO. Comparing our H2 and CO data with available ammonia NH3
observations from literature one obtains relatively high NH3 abundances of a
few 10e(-7) in both the warm and the cold gas. A single shock or
Photo-Dissociation Region (PDR) cannot explain all the observed H2 lines.
Alternatives for the heating mechanisms are discussed.Comment: 14 pages including figures, to be published in A&
Sub-arcsecond imaging of the radio continuum and neutral hydrogen in the Medusa merger
We present sub-arcsecond, Multi-Element Radio Linked Interferometer (MERLIN)
observations of the decimetre radio continuum structure and neutral hydrogen
(HI) absorption from the nuclear region of the starburst galaxy NGC 4194 (the
Medusa Merger). The continuum structure of the central kiloparsec of the Medusa
has been imaged, revealing a pair of compact radio components surrounded by
more diffuse, weak radio emission. Using the constraints provided by these
observations and those within the literature we conclude that the majority of
this radio emission is related to the ongoing star-formation in this merger
system.
With these observations we also trace deep HI absorption across the detected
radio continuum structure. The absorbing HI gas structure exhibits large
variations in column densities. The largest column densities are found toward
the south of the nuclear radio continuum, co-spatial with both a nuclear dust
lane and peaks in CO (1->0) emission. The dynamics of the HI absorption,
which are consistent with lower resolution CO emission observations,
trace a shallow north-south velocity gradient of ~320km/s/kpc. This gradient is
interpreted as part of a rotating gas structure within the nuclear region. The
HI and CO velocity structure, in conjunction with the observed gas column
densities and distribution, is further discussed in the context of the fuelling
and gas physics of the ongoing starburst within the centre of this merger.Comment: 12 pages, 5 figures, to appear in A&
Kinetic temperatures toward X1/X2 orbit interceptions regions and Giant Molecular Loops in the Galactic center region
Context: It is well known that the kinetic temperatures, Tkin, of the
molecular clouds in the Galactic center region are higher than in typical disk
clouds. However, the Tkin of the molecular complexes found at higher latitudes
towards the giant molecular loops in the central region of the Galaxy is so far
unknown. The gas of these high latitude molecular clouds (hereafter referred to
as halo clouds) is located in a region where the gas in the disk may interact
with the gas in the halo in the Galactic center region.
Aims: To derive Tkin in the molecular clouds at high latitude and understand
the physical process responsible for the heating of the molecular gas both in
the Central Molecular Zone (the concentration of molecular gas in the inner 500
pc) and in the giant molecular loops.
Methods: We measured the metastable inversion transitions of NH3 from (1,1)
to (6,6) toward six positions selected throughout the Galactic central disk and
halo. We used rotational diagrams and large velocity gradient modeling to
estimate the kinetic temperatures toward all the sources. We also observed
other molecules like SiO, HNCO, CS, C34S, C18O, and 13CO, to derive the
densities and to trace different physical processes (shocks, photodissociation,
dense gas) expected to dominate the heating of the molecular gas.
Results: We derive for the first time Tkin of the high latitude clouds
interacting with the disk in the Galactic center region. We find high
rotational temperatures in all the observed positions. We derive two kinetic
temperature components (150 K and 40 K) for the positions in the Central
Molecular Zone, and only the warm kinetic temperature component for the clouds
toward the giant molecular loops. The fractional abundances derived from the
different molecules suggest that shocks provide the main heating mechanism
throughout the Galactic center, also at high latitudesComment: accepted for publication in A&A 06/09/201
The Interaction between the ISM and Star Formation in the Dwarf Starburst Galaxy NGC 4214
We present the first interferometric study of the molecular gas in the
metal-poor dwarf starburst galaxy NGC 4214. Our map of the 12CO(1-0) emission,
obtained at the OVRO millimeter array, reveals an unexpected structural wealth.
We detected three regions of molecular emission in the north-west (NW),
south-east (SE) and centre of NGC 4214 which are in very different and distinct
evolutionary stages (total molecular mass: 5.1 x 10^6 M_sun). These differences
are apparent most dramatically when the CO morphologies are compared to optical
ground based and HST imaging: massive star formation has not started yet in the
NW region; the well-known starburst in the centre is the most evolved and star
formation in the SE complex started more recently. We derive a star formation
efficiency of 8% for the SE complex. Using high--resolution VLA observations of
neutral hydrogen HI and our CO data we generated a total gas column density map
for NGC 4214 (HI + H_2). No clear correlation is seen between the peaks of HI,
CO and the sites of ongoing star formation. This emphasizes the irregular
nature of dwarf galaxies. The HI and CO velocities agree well, so do the
H-alpha velocities. In total, we cataloged 14 molecular clumps in NGC 4214. Our
results from a virial mass analysis are compatible with a Galactic CO-to-H_2
conversion factor for NGC 4214 (lower than what is usually found in metal-poor
dwarf galaxies).Comment: accepted for publication in the AJ (February 2001), full ps file at:
ftp://ftp.astro.caltech.edu/users/fw/ngc4214/walter_prep.p
Photodissociation chemistry footprints in the Starburst galaxy NGC 253
We report the first detection of PDR molecular tracers, namely HOC+, and CO+,
and confirm the detection of the also PDR tracer HCO towards the starburst
galaxy NGC 253, claimed to be mainly dominated by shock heating and in an
earlier stage of evolution than M 82, the prototypical extragalactic PDR. Our
CO+ detection suffers from significant blending to a group of transitions of
13CH3OH, tentatively detected for the first time in the extragalactic
interstellar medium. These species are efficiently formed in the highly UV
irradiated outer layers of molecular clouds, as observed in the late stage
nuclear starburst in M 82. The molecular abundance ratios we derive for these
molecules are very similar to those found in M 82. This strongly supports the
idea that these molecules are tracing the PDR component associated with the
starburst in the nuclear region of NGC 253. A comparison with the predictions
of chemical models for PDRs shows that the observed molecular ratios are
tracing the outer layers of UV illuminated clouds up to two magnitudes of
visual extinction. Chemical models, which include grain formation and
photodissociation of HNCO, support the scenario of a photo-dominated chemistry
as an explanation to the abundances of the observed species. From this
comparison we conclude that the molecular clouds in NGC 253 are more massive
and with larger column densities than those in M 82, as expected from the
evolutionary stage of the starbursts in both galaxies.Comment: 32 pages, 4 figures, Published in Ap
Dense Gas in Nearby Galaxies: XVII. The Distribution of Ammonia in NGC253, Maffei2 and IC342
The central few 100 pc of galaxies often contain large amounts of molecular
gas. The chemical and physical properties of these extragalactic star formation
regions differ from those in galactic disks, but are poorly constrained. This
study aims to develop a better knowledge of the spatial distribution and
kinetic temperature of the dense neutral gas associated with the nuclear
regions of three prototypical spiral galaxies, NGC253, IC342, and Maffei2. VLA
CnD and D configuration measurements have been made of three ammonia (NH3)
inversion transitions. The (J,K)=(1,1) and (2,2) transitions of NH3 were imaged
toward IC342 and Maffei2. The (3,3) transition was imaged toward NGC253. The
entire flux obtained from single-antenna measurements is recovered for all
three galaxies observed. Derived lower limits to the kinetic temperatures
determined for the giant molecular clouds in the centers of these galaxies are
between 25 and 50K. There is good agreement between the distributions of NH3
and other H2 tracers, such as rare CO isotopologues or HCN, suggesting that NH3
is representative of the distribution of dense gas. The "Western Peak" in IC342
is seen in the (6,6) line but not in lower transitions, suggesting maser
emission in the (6,6) transition.Comment: 13 pages, 8 figures, latex format, accepted by A&
Coupling the dynamics and the molecular chemistry in the Galactic center
The physical conditions of the Galactic center (GC) clouds moving with
non-circular velocities are not well-known. We have studied the physical
conditions of these clouds with the aim of better understanding the origin of
the outstanding physical conditions of the GC molecular gas and the possible
effect of the large scale dynamics on these physical conditions.Using published
CO(1-0) data, we have selected a set of clouds belonging to all the kinematical
components seen in the longitude-velocity diagram of the GC. We have done a
survey of dense gas in all the components using the J=2-1 lines of CS and SiO
as tracers of high density gas and shock chemistry. We have detected CS and SiO
emission in all the kinematical components. The gas density and the SiO
abundance of the clouds in non-circular orbits are similar those in the nuclear
ring (GCR). Therefore, in all the kinematical components there are dense clouds
that can withstand the tidal shear. However, there is no evidence of star
formation outside the GCR. The high relative velocity and shear expected in the
dust-lanes along the bar major axis could inhibit the star formation process,
as observed in other galaxies. The high SiO abundances derived in the
non-circular velocity clouds are likely due to the large-scale shocks that
created the dust lanesComment: One figure as an independent PDF file. Accepted by A&
Deconstructing sarcomeric structure-function relations in titin-BioID knock-in mice
Proximity proteomics has greatly advanced the analysis of native protein complexes and subcellular structures in culture, but has not been amenable to study development and disease in vivo. Here, we have generated a knock-in mouse with the biotin ligase (BioID) inserted at titin's Z-disc region to identify protein networks that connect the sarcomere to signal transduction and metabolism. Our census of the sarcomeric proteome from neonatal to adult heart and quadriceps reveals how perinatal signaling, protein homeostasis and the shift to adult energy metabolism shape the properties of striated muscle cells. Mapping biotinylation sites to sarcomere structures refines our understanding of myofilament dynamics and supports the hypothesis that myosin filaments penetrate Z-discs to dampen contraction. Extending this proof of concept study to BioID fusion proteins generated with Crispr/CAS9 in animal models recapitulating human pathology will facilitate the future analysis of molecular machines and signaling hubs in physiological, pharmacological, and disease context
Dense gas in nearby galaxies XVI. The nuclear starburst environment in NGC4945
A multi-line millimeter-wave study of the nearby starburst galaxy NGC 4945
has been carried out using the Swedish-ESO Submillimeter Telescope (SEST). The
study covers the frequency range from 82 GHz to 354 GHz and includes 80
transitions of 19 molecules. 1.3 mm continuum data of the nuclear source are
also presented. A large number of molecular species indicate the presence of a
prominent high density interstellar gas component characterized by cm. Abundances of molecular species are calculated and
compared with abundances observed toward the starburst galaxies NGC 253 and M
82 and galactic sources. Apparent is an `overabundance' of HNC in the nuclear
environment of NGC 4945. While the HNC/HCN =1--0 line intensity ratio is
0.5, the HNC/HCN abundance ratio is 1. While HCN is subthermally
excited (8 K), CN is even less excited (3--4
K), indicating that it arises from a less dense gas component and that its
=2--1 line can be optically thin even though its =1--0 emission is
moderately optically thick. Overall, fractional abundances of NGC 4945 suggest
that the starburst has reached a stage of evolution that is intermediate
between those observed in NGC 253 and M 82. Carbon, nitrogen, oxygen and sulfur
isotope ratios are also determined. Within the limits of uncertainty, carbon
and oxygen isotope ratios appear to be the same in the nuclear regions of NGC
4945 and NGC 253. High O/O, low O/O and
N/N and perhaps also low S/S ratios appear to be
characteristic properties of a starburst environment in which massive stars
have had sufficient time to affect the isotopic composition of the surrounding
interstellar medium.Comment: 26 pages, 16 figures, accepted bt A&
Ground-state ammonia and water in absorption towards Sgr B2
We have used the Odin submillimetre-wave satellite telescope to observe the
ground state transitions of ortho-ammonia and ortho-water, including their 15N,
18O, and 17O isotopologues, towards Sgr B2. The extensive simultaneous velocity
coverage of the observations, >500 km/s, ensures that we can probe the
conditions of both the warm, dense gas of the molecular cloud Sgr B2 near the
Galactic centre, and the more diffuse gas in the Galactic disk clouds along the
line-of-sight. We present ground-state NH3 absorption in seven distinct
velocity features along the line-of-sight towards Sgr B2. We find a nearly
linear correlation between the column densities of NH3 and CS, and a
square-root relation to N2H+. The ammonia abundance in these diffuse Galactic
disk clouds is estimated to be about (0.5-1)e-8, similar to that observed for
diffuse clouds in the outer Galaxy. On the basis of the detection of H218O
absorption in the 3 kpc arm, and the absence of such a feature in the H217O
spectrum, we conclude that the water abundance is around 1e-7, compared to
~1e-8 for NH3. The Sgr B2 molecular cloud itself is seen in absorption in NH3,
15NH3, H2O, H218O, and H217O, with emission superimposed on the absorption in
the main isotopologues. The non-LTE excitation of NH3 in the environment of Sgr
B2 can be explained without invoking an unusually hot (500 K) molecular layer.
A hot layer is similarly not required to explain the line profiles of the
1_{1,0}-1_{0,1} transition from H2O and its isotopologues. The relatively weak
15NH3 absorption in the Sgr B2 molecular cloud indicates a high [14N/15N]
isotopic ratio >600. The abundance ratio of H218O and H217O is found to be
relatively low, 2.5--3. These results together indicate that the dominant
nucleosynthesis process in the Galactic centre is CNO hydrogen burning.Comment: 10 pages, 5 figure
- …