16 research outputs found
Recommended from our members
Spatial and temporal variability in MLT turbulence inferred from in situ and ground-based observations during the WADIS-1 sounding rocket campaign
In summer 2013 the WADIS-1 sounding rocket campaign was conducted at the Andøya Space Center (ACS) in northern Norway (69° N, 16° E). Among other things, it addressed the question of the variability in mesosphere/lower thermosphere (MLT) turbulence, both in time and space. A unique feature of the WADIS project was multi-point turbulence sounding applying different measurement techniques including rocket-borne ionization gauges, VHF MAARSY radar, and VHF EISCAT radar near Tromsø. This allowed for horizontal variability to be observed in the turbulence field in the MLT at scales from a few to 100 km. We found that the turbulence dissipation rate, ε varied in space in a wavelike manner both horizontally and in the vertical direction. This wavelike modulation reveals the same vertical wavelengths as those seen in gravity waves. We also found that the vertical mean value of radar observations of ε agrees reasonably with rocket-borne measurements. In this way defined 〈εradar〉 value reveals clear tidal modulation and results in variation by up to 2 orders of magnitude with periods of 24 h. The 〈εradar〉 value also shows 12 h and shorter (1 to a few hours) modulations resulting in one decade of variation in 〈εradar〉 magnitude. The 24 h modulation appeared to be in phase with tidal change of horizontal wind observed by SAURA-MF radar. Such wavelike and, in particular, tidal modulation of the turbulence dissipation field in the MLT region inferred from our analysis is a new finding of this work
Simultaneous in Situ Measurements of Small-Scale Structures in Neutral, Plasma, and Atomic Oxygen Densities During the WADIS Sounding Rocket Project
In this paper we present an overview of measurements conducted during the WADIS-2 rocket campaign. We investigate the effect of small-scale processes like gravity waves and turbulence on the distribution of atomic oxygen and other species in the mesosphere–lower thermosphere (MLT) region. Our analysis suggests that density fluctuations of atomic oxygen are coupled to fluctuations of other constituents, i.e., plasma and neutrals. Our measurements show that all measured quantities, including winds, densities, and temperatures, reveal signatures of both waves and turbulence. We show observations of gravity wave saturation and breakdown together with simultaneous measurements of generated turbulence. Atomic oxygen inside turbulence layers shows two different spectral behaviors, which might imply a change in its diffusion properties
Community-driven development for computational biology at Sprints, Hackathons and Codefests
Background: Computational biology comprises a wide range of technologies and approaches. Multiple technologies can be combined to create more powerful workflows if the individuals contributing the data or providing tools for its interpretation can find mutual understanding and consensus. Much conversation and joint investigation are required in order to identify and implement the best approaches. Traditionally, scientific conferences feature talks presenting novel technologies or insights, followed up by informal discussions during coffee breaks. In multi-institution collaborations, in order to reach agreement on implementation details or to transfer deeper insights in a technology and practical skills, a representative of one group typically visits the other. However, this does not scale well when the number of technologies or research groups is large. Conferences have responded to this issue by introducing Birds-of-a-Feather (BoF) sessions, which offer an opportunity for individuals with common interests to intensify their interaction. However, parallel BoF sessions often make it hard for participants to join multiple BoFs and find common ground between the different technologies, and BoFs are generally too short to allow time for participants to program together. Results: This report summarises our experience with computational biology Codefests, Hackathons and Sprints, which are interactive developer meetings. They are structured to reduce the limitations of traditional scientific meetings described above by strengthening the interaction among peers and letting the participants determine the schedule and topics. These meetings are commonly run as loosely scheduled "unconferences" (self-organized identification of participants and topics for meetings) over at least two days, with early introductory talks to welcome and organize contributors, followed by intensive collaborative coding sessions. We summarise some prominent achievements of those meetings and describe differences in how these are organised, how their audience is addressed, and their outreach to their respective communities. Conclusions: Hackathons, Codefests and Sprints share a stimulating atmosphere that encourages participants to jointly brainstorm and tackle problems of shared interest in a self-driven proactive environment, as well as providing an opportunity for new participants to get involved in collaborative projects
Influence of soil and climate on root zone storage capacity
Root zone storage capacity (Sr) is an important variable for hydrology and climate studies, as it strongly influences the hydrological functioning of a catchment and, via evaporation, the local climate. Despite its importance, it remains difficult to obtain a wellâ founded catchment representative estimate. This study tests the hypothesis that vegetation adapts its Sr to create a buffer large enough to sustain the plant during drought conditions of a certain critical strength (with a certain probability of exceedance). Following this method, Sr can be estimated from precipitation and evaporative demand data. The results of this â climateâ based methodâ are compared with traditional estimates from soil data for 32 catchments in New Zealand. The results show that the differences between catchments in climateâ derived catchment representative Sr values are larger than for soilâ derived Sr values. Using a model experiment, we show that the climateâ derived Sr can better reproduce hydrological regime signatures for humid catchments; for more arid catchments, the soil and climate methods perform similarly. This makes the climateâ based Sr a valuable addition for increasing hydrological understanding and reducing hydrological model uncertainty.Key Points:Plants develop their root systems to survive droughtsModel root zone storage capacity (Sr) can be inferred from climate recordsModel experiment shows that Sr is stronger influenced by climate than by soilPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137190/1/wrcr21890.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137190/2/wrcr21890_am.pd
Combination of Lidar and Model Data for Studying Deep Gravity Wave Propagation
The paper presents a feasible method to complement ground-based middle atmospheric Rayleigh lidar temperature observations with numerical simulations in the lower stratosphere and troposphere to study gravity waves. Validated mesoscale numerical simulations are utilized to complement the temperature below 30-km altitude. For this purpose, high-temporal-resolution output of the numerical results was interpolated on the position of the lidar in the lee of the Scandinavian mountain range. Two wintertime cases of orographically induced gravity waves are analyzed. Wave parameters are derived using a wavelet analysis of the combined dataset throughout the entire altitude range from the troposphere to the mesosphere. Although similar in the tropospheric forcings, both cases differ in vertical propagation. The combined dataset reveals stratospheric wave breaking for one case, whereas the mountain waves in the other case could propagate up to about 40-km altitude. The lidar observations reveal an interaction of the vertically propagating gravity waves with the stratopause, leading to a stratopause descent in both cases
Computational Analysis of Genetic Code Variations Optimized for the Robustness against Point Mutations with Wobble-like Effects
It is believed that the codon–amino acid assignments of the standard genetic code (SGC) help to minimize the negative effects caused by point mutations. All possible point mutations of the genetic code can be represented as a weighted graph with weights that correspond to the probabilities of these mutations. The robustness of a code against point mutations can be described then by means of the so-called conductance measure. This paper quantifies the wobble effect, which was investigated previously by applying the weighted graph approach, and seeks optimal weights using an evolutionary optimization algorithm to maximize the code’s robustness. One result of our study is that the robustness of the genetic code is least influenced by mutations in the third position—like with the wobble effect. Moreover, the results clearly demonstrate that point mutations in the first, and even more importantly, in the second base of a codon have a very large influence on the robustness of the genetic code. These results were compared to single nucleotide variants (SNV) in coding sequences which support our findings. Additionally, it was analyzed which structure of a genetic code evolves from random code tables when the robustness is maximized. Our calculations show that the resulting code tables are very close to the standard genetic code. In conclusion, the results illustrate that the robustness against point mutations seems to be an important factor in the evolution of the standard genetic code
Atomic oxygen number densities in the mesosphere–lower thermosphere region measured by solid electrolyte sensors on WADIS-2
Absolute profiles of atomic oxygen number densities with high vertical resolution have been determined in
the mesosphere–lower thermosphere (MLT) region from in
situ measurements by several rocket-borne solid electrolyte
sensors. The amperometric sensors were operated in both
controlled and uncontrolled modes and with various orientations on the foredeck and aft deck of the payload. Calibration was based on mass spectrometry in a molecular beam containing atomic oxygen produced in a microwave discharge. The sensor signal is proportional to the number flux onto the electrodes, and the mass flow rate in the molecular beam was additionally measured to derive this quantity from the spectrometer reading
Nighttime O(1D) and corresponding Atmospheric Band emission (762 nm) derived from rocket-borne experiment
Based on common volume rocket-borne measurements of temperature, densities of atomic oxygen and neutral air, we derived O(1D) nighttime concentrations and corresponding Atmospheric band emission (762 nm). This is one of the first retrievals of the nighttime O(1D) concentration. Recently, Kalogerakis, Sharma and co-workers have suggested a new production path of O(1D) based on the reaction of vibrationally excited OH and O. We calculate Atmospheric band volume emission related to the population of O2(b1Σg+) from O(1D) and compare with total Atmospheric band emissions observed during the same rocket launch