20 research outputs found

    The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics

    Full text link
    [EN] The riparian vegetation dynamic model (RVDM) is an ecohydrological model aimed to study the vegetation dynamics in riparian areas that represents an upgrade with respect to previous tools in the way of understanding the riparian dynamics. Important novelties are proposed by this tool, including a high temporal resolution (daily time step), a proposal of a new plant classification approach useful for research and management (successional plant functional types), good representation of the key processes that determine the vegetation dynamics in riparian areas (drought and flood impacts, recruitment, growth, succession and competition), an easy implementation and feasible inclusion of river morphodynamics in the model implementation (including different daily elevation and soil maps in the inputs). The model implementation in a Mediterranean semi-arid study site resulted satisfactorily (cell by cell calibration accuracy >= 65% and cell by cell validation accuracy between 40% and 60%), demonstrating the great potential of this approach for future research and management applications. Although 36 parameters are included in the model conceptualization, the global sensitivity analysis demonstrated that only eight types of parameters are actually influent. These parameters are as follows: minimum time since mixed for transition to terrestrial, root depths, transpiration factors, critical shear stress of early stages, minimum biomass required to allow succession, germination minimum capillary water content in the upper soil, effective depth considered for evaporation from bare soil and coverage of pioneers. Riparian vegetation dynamic model will be a useful tool for gaining a better understanding of the riparian plants behaviour under different ecohydrological conditions. Copyright (C) 2015 John Wiley & Sons, Ltd.This research has been developed within the research project SCARCE (Consolider-Ingenio 2010 CSD2009-00065) supported by the Spanish Ministry of Economy and Competitiveness. The hydrological data, the aerial photographs and the meteorological data have been supplied by the Hydrological Studies Centre (CEH-CEDEX), the Jucar River Basin Authority and the Spanish National Meteorological Agency (AEMET), respectively.García-Arias, A.; Francés, F. (2016). The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics. Ecohydrology. 9(3):438-459. https://doi.org/10.1002/eco.1648S43845993Baird, K. J., & Maddock, T. (2005). Simulating riparian evapotranspiration: a new methodology and application for groundwater models. Journal of Hydrology, 312(1-4), 176-190. doi:10.1016/j.jhydrol.2005.02.014Benjankar, R., Egger, G., Jorde, K., Goodwin, P., & Glenn, N. F. (2011). Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management, 92(12), 3058-3070. doi:10.1016/j.jenvman.2011.07.017Benjankar, R., Burke, M., Yager, E., Tonina, D., Egger, G., Rood, S. B., & Merz, N. (2014). Development of a spatially-distributed hydroecological model to simulate cottonwood seedling recruitment along rivers. Journal of Environmental Management, 145, 277-288. doi:10.1016/j.jenvman.2014.06.027BOEDELTJE, G., BAKKER, J. P., TEN BRINKE, A., VAN GROENENDAEL, J. M., & SOESBERGEN, M. (2004). Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology, 92(5), 786-796. doi:10.1111/j.0022-0477.2004.00906.xBrinson, M. M., & Verhoeven, J. (1999). Riparian forests. Maintaining Biodiversity in Forest Ecosystems, 265-299. doi:10.1017/cbo9780511613029.010CAMPBELL, G. S. (1974). A SIMPLE METHOD FOR DETERMINING UNSATURATED CONDUCTIVITY FROM MOISTURE RETENTION DATA. Soil Science, 117(6), 311-314. doi:10.1097/00010694-197406000-00001Camporeale, C., & Ridolfi, L. (2006). Riparian vegetation distribution induced by river flow variability: A stochastic approach. Water Resources Research, 42(10). doi:10.1029/2006wr004933Camporeale, C., Perucca, E., Ridolfi, L., & Gurnell, A. M. (2013). MODELING THE INTERACTIONS BETWEEN RIVER MORPHODYNAMICS AND RIPARIAN VEGETATION. Reviews of Geophysics, 51(3), 379-414. doi:10.1002/rog.20014Canadell, J., Jackson, R. B., Ehleringer, J. B., Mooney, H. A., Sala, O. E., & Schulze, E.-D. (1996). Maximum rooting depth of vegetation types at the global scale. Oecologia, 108(4), 583-595. doi:10.1007/bf00329030Cannell, M. G. R., Milne, R., Sheppard, L. J., & Unsworth, M. H. (1987). Radiation Interception and Productivity of Willow. The Journal of Applied Ecology, 24(1), 261. doi:10.2307/2403803Cao, X., Jia, J. B., Li, H., Li, M. C., Luo, J., Liang, Z. S., … Luo, Z. B. (2011). Photosynthesis, water use efficiency and stable carbon isotope composition are associated with anatomical properties of leaf and xylem in six poplar species. Plant Biology, 14(4), 612-620. doi:10.1111/j.1438-8677.2011.00531.xCerrillo, T., Rodríguez, M. E., Achinelli, F., Doffo, G., & Luquez, V. M. (2013). Do greenhouse experiments predict willow responses tolong term flooding events in the field? Bosque (Valdivia), 34(1), 17-18. doi:10.4067/s0717-92002013000100009Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104Collalti, A., Perugini, L., Santini, M., Chiti, T., Nolè, A., Matteucci, G., & Valentini, R. (2014). A process-based model to simulate growth in forests with complex structure: Evaluation and use of 3D-CMCC Forest Ecosystem Model in a deciduous forest in Central Italy. Ecological Modelling, 272, 362-378. doi:10.1016/j.ecolmodel.2013.09.016Corenblit, D., Tabacchi, E., Steiger, J., & Gurnell, A. M. (2007). Reciprocal interactions and adjustments between fluvial landforms and vegetation dynamics in river corridors: A review of complementary approaches. Earth-Science Reviews, 84(1-2), 56-86. doi:10.1016/j.earscirev.2007.05.004Corenblit, D., Steiger, J., Tabacchi, E., González, E., & Planty-Tabacchi, A.-M. (2012). ECOSYSTEM ENGINEERS MODULATE EXOTIC INVASIONS IN RIPARIAN PLANT COMMUNITIES BY MODIFYING HYDROGEOMORPHIC CONNECTIVITY. River Research and Applications, 30(1), 45-59. doi:10.1002/rra.2618Coulthard, T. J., Hicks, D. M., & Van De Wiel, M. J. (2007). Cellular modelling of river catchments and reaches: Advantages, limitations and prospects. Geomorphology, 90(3-4), 192-207. doi:10.1016/j.geomorph.2006.10.030Douma, J. C., de Haan, M. W. A., Aerts, R., Witte, J.-P. M., & van Bodegom, P. M. (2011). Succession-induced trait shifts across a wide range of NW European ecosystems are driven by light and modulated by initial abiotic conditions. Journal of Ecology, 100(2), 366-380. doi:10.1111/j.1365-2745.2011.01932.xFormann, E., Habersack, H. M., & Schober, S. (2007). Morphodynamic river processes and techniques for assessment of channel evolution in Alpine gravel bed rivers. Geomorphology, 90(3-4), 340-355. doi:10.1016/j.geomorph.2006.10.029García-Arias, A., Francés, F., Ferreira, T., Egger, G., Martínez-Capel, F., Garófano-Gómez, V., … Rodríguez-González, P. M. (2012). Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology, 6(4), 635-651. doi:10.1002/eco.1331García-Arias, A., Francés, F., Morales-de la Cruz, M., Real, J., Vallés-Morán, F., Garófano-Gómez, V., & Martínez-Capel, F. (2013). Riparian evapotranspiration modelling: model description and implementation for predicting vegetation spatial distribution in semi-arid environments. Ecohydrology, 7(2), 659-677. doi:10.1002/eco.1387Glenn, E., Huete, A., Nagler, P., & Nelson, S. (2008). Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors, 8(4), 2136-2160. doi:10.3390/s8042136González, E., Comín, F. A., & Muller, E. (2009). Seed dispersal, germination and early seedling establishment of Populus alba L. under simulated water table declines in different substrates. Trees, 24(1), 151-163. doi:10.1007/s00468-009-0388-yGREET, J., ANGUS WEBB, J., & COUSENS, R. D. (2011). The importance of seasonal flow timing for riparian vegetation dynamics: a systematic review using causal criteria analysis. Freshwater Biology, 56(7), 1231-1247. doi:10.1111/j.1365-2427.2011.02564.xGuilloy-Froget, H., Muller, E., Barsoum, N., & Hughes, F. M. M. (2002). Dispersal, germination, and survival of Populus nigra L. (Salicaceae) in changing hydrologic conditions. Wetlands, 22(3), 478-488. doi:10.1672/0277-5212(2002)022[0478:dgasop]2.0.co;2Gurnell, A., Thompson, K., Goodson, J., & Moggridge, H. (2008). Propagule deposition along river margins: linking hydrology and ecology. Journal of Ecology, 96(3), 553-565. doi:10.1111/j.1365-2745.2008.01358.xHood, W. G., & Naiman, R. J. (2000). Plant Ecology, 148(1), 105-114. doi:10.1023/a:1009800327334Hooke, J. M., Brookes, C. J., Duane, W., & Mant, J. M. (2005). A simulation model of morphological, vegetation and sediment changes in ephemeral streams. Earth Surface Processes and Landforms, 30(7), 845-866. doi:10.1002/esp.1195Hornberger, G. (1980). Eutrophication in peel inlet—I. The problem-defining behavior and a mathematical model for the phosphorus scenario. Water Research, 14(1), 29-42. doi:10.1016/0043-1354(80)90039-1Kozlowski, T. T. (2002). Physiological-ecological impacts of flooding on riparian forest ecosystems. Wetlands, 22(3), 550-561. doi:10.1672/0277-5212(2002)022[0550:peiofo]2.0.co;2Laio, F., Porporato, A., Fernandez-Illescas, C. ., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 745-762. doi:10.1016/s0309-1708(01)00007-0Lite, S. J., Bagstad, K. J., & Stromberg, J. C. (2005). Riparian plant species richness along lateral and longitudinal gradients of water stress and flood disturbance, San Pedro River, Arizona, USA. Journal of Arid Environments, 63(4), 785-813. doi:10.1016/j.jaridenv.2005.03.026Lytle, D. A., & Poff, N. L. (2004). Adaptation to natural flow regimes. Trends in Ecology & Evolution, 19(2), 94-100. doi:10.1016/j.tree.2003.10.002Maddock T III Baird KJ 2003 A riparian evapotranspiration package for Modflow-96 and Modflow-2000 University of Arizona 60Maddock T III Baird KJ Hanson RT Schmid W Hoori A 2012 RIP-ET: a riparian evapotranspiration package for MODFLOW-2005 76Mahoney, J. M., & Rood, S. B. (1998). Streamflow requirements for cottonwood seedling recruitment—An integrative model. Wetlands, 18(4), 634-645. doi:10.1007/bf03161678McCree, K. J. (1971). The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology, 9, 191-216. doi:10.1016/0002-1571(71)90022-7Medici, C., Wade, A. J., & Francés, F. (2012). Does increased hydrochemical model complexity decrease robustness? Journal of Hydrology, 440-441, 1-13. doi:10.1016/j.jhydrol.2012.02.047MERRITT, D. M., SCOTT, M. L., LeROY POFF, N., AUBLE, G. T., & LYTLE, D. A. (2010). Theory, methods and tools for determining environmental flows for riparian vegetation: riparian vegetation-flow response guilds. Freshwater Biology, 55(1), 206-225. doi:10.1111/j.1365-2427.2009.02206.xMontaldo, N., Rondena, R., Albertson, J. D., & Mancini, M. (2005). Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water-limited ecosystems. Water Resources Research, 41(10). doi:10.1029/2005wr004094Mouton, A. M., De Baets, B., & Goethals, P. L. M. (2010). Ecological relevance of performance criteria for species distribution models. Ecological Modelling, 221(16), 1995-2002. doi:10.1016/j.ecolmodel.2010.04.017NAGLER, P. (2004). Leaf area index and normalized difference vegetation index as predictors of canopy characteristics and light interception by riparian species on the Lower Colorado River. Agricultural and Forest Meteorology, 125(1-2), 1-17. doi:10.1016/j.agrformet.2004.03.008Naiman, R. J., Latterell, J. J., Pettit, N. E., & Olden, J. D. (2008). Flow variability and the biophysical vitality of river systems. Comptes Rendus Geoscience, 340(9-10), 629-643. doi:10.1016/j.crte.2008.01.002Naumburg, E., Mata-gonzalez, R., Hunter, R. G., Mclendon, T., & Martin, D. W. (2005). Phreatophytic Vegetation and Groundwater Fluctuations: A Review of Current Research and Application of Ecosystem Response Modeling with an Emphasis on Great Basin Vegetation. Environmental Management, 35(6), 726-740. doi:10.1007/s00267-004-0194-7Neff, K. P., & Baldwin, A. H. (2005). Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh. Wetlands, 25(2), 392-404. doi:10.1672/14PADILLA, F. M., & PUGNAIRE, F. I. (2007). Rooting depth and soil moisture control Mediterranean woody seedling survival during drought. Functional Ecology, 21(3), 489-495. doi:10.1111/j.1365-2435.2007.01267.xPasquato, M., Medici, C., Friend, A. D., & Francés, F. (2014). Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data. Ecohydrology, 8(6), 1024-1036. doi:10.1002/eco.1559Perona, P., Camporeale, C., Perucca, E., Savina, M., Molnar, P., Burlando, P., & Ridolfi, L. (2009). Modelling river and riparian vegetation interactions and related importance for sustainable ecosystem management. Aquatic Sciences, 71(3), 266-278. doi:10.1007/s00027-009-9215-1Perucca, E., Camporeale, C., & Ridolfi, L. (2006). Influence of river meandering dynamics on riparian vegetation pattern formation. Journal of Geophysical Research, 111(G1). doi:10.1029/2005jg000073Polley, H. W., Phillips, R. L., Frank, A. B., Bradford, J. A., Sims, P. L., Morgan, J. A., & Kiniry, J. R. (2010). Variability in Light-Use Efficiency for Gross Primary Productivity on Great Plains Grasslands. Ecosystems, 14(1), 15-27. doi:10.1007/s10021-010-9389-3Porporato, A., Laio, F., Ridolfi, L., & Rodriguez-Iturbe, I. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 725-744. doi:10.1016/s0309-1708(01)00006-9Quevedo, D. I., & Francés, F. (2008). A conceptual dynamic vegetation-soil model for arid and semiarid zones. Hydrology and Earth System Sciences, 12(5), 1175-1187. doi:10.5194/hess-12-1175-2008Rodriguez-Iturbe, I., Porporato, A., Laio, F., & Ridolfi, L. (2001). Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress. Advances in Water Resources, 24(7), 695-705. doi:10.1016/s0309-1708(01)00004-5Rood, S. B., Braatne, J. H., & Hughes, F. M. R. (2003). Ecophysiology of riparian cottonwoods: stream flow dependency, water relations and restoration. Tree Physiology, 23(16), 1113-1124. doi:10.1093/treephys/23.16.1113Ryel, R., Caldwell, M., Yoder, C., Or, D., & Leffler, A. (2002). Hydraulic redistribution in a stand of Artemisia tridentata: evaluation of benefits to transpiration assessed with a simulation model. Oecologia, 130(2), 173-184. doi:10.1007/s004420100794Schenk, H. J., & Jackson, R. B. (2002). Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. Journal of Ecology, 90(3), 480-494. doi:10.1046/j.1365-2745.2002.00682.xScott RL Goodrich DC Levick LR 2003 A GIS-based management tool to quantify riparian vegetation groundwater use 222 227Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., … Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2), 161-185. doi:10.1046/j.1365-2486.2003.00569.xSoetaert, K., Hoffmann, M., Meire, P., Starink, M., Oevelen, D. van, Regenmortel, S. V., & Cox, T. (2004). Modeling growth and carbon allocation in two reed beds (Phragmites australis) in the Scheldt estuary. Aquatic Botany, 79(3), 211-234. doi:10.1016/j.aquabot.2004.02.001Stevens LE Waring LG 1985 The effects of prolonged flooding on the riparian plant community in Grand CanyonTabacchi, E., Correll, D. L., Hauer, R., Pinay, G., Planty‐Tabacchi, A., & Wissmar, R. C. (1998). Development, maintenance and role of riparian vegetation in the river landscape. Freshwater Biology, 40(3), 497-516. doi:10.1046/j.1365-2427.1998.00381.xTabacchi, E., Planty-Tabacchi, A.-M., Roques, L., & Nadal, E. (2005). Seed inputs in riparian zones: implications for plant invasion. River Research and Applications, 21(2-3), 299-313. doi:10.1002/rra.848TURNER, D. P., URBANSKI, S., BREMER, D., WOFSY, S. C., MEYERS, T., GOWER, S. T., & GREGORY, M. (2003). A cross-biome comparison of daily light use efficiency for gross primary production. Global Change Biology, 9(3), 383-395. doi:10.1046/j.1365-2486.2003.00573.xWade, A. J., Hornberger, G. M., Whitehead, P. G., Jarvie, H. P., & Flynn, N. (2001). On modeling the mechanisms that control in-stream phosphorus, macrophyte, and epiphyte dynamics: An assessment of a new model using general sensitivity analysis. Water Resources Research, 37(11), 2777-2792. doi:10.1029/2000wr000115Webb, R. H., & Leake, S. A. (2006). Ground-water surface-water interactions and long-term change in riverine riparian vegetation in the southwestern United States. Journal of Hydrology, 320(3-4), 302-323. doi:10.1016/j.jhydrol.2005.07.022Woodward, F. I., & Cramer, W. (1996). Plant functional types and climatic change: Introduction. Journal of Vegetation Science, 7(3), 306-308. doi:10.1111/j.1654-1103.1996.tb00489.xYe, F., Chen, Q., Blanckaert, K., & Ma, J. (2012). Riparian vegetation dynamics: insight provided by a process-based model, a statistical model and field data. Ecohydrology, 6(4), 567-585. doi:10.1002/eco.1348Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D., … Wofsy, S. C. (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology, 143(3-4), 189-207. doi:10.1016/j.agrformet.2006.12.001Zheng, Z., & Wang, G. (2007). Modeling the dynamic root water uptake and its hydrological impact at the Reserva Jaru site in Amazonia. Journal of Geophysical Research: Biogeosciences, 112(G4), n/a-n/a. doi:10.1029/2007jg00041

    Populus nigra L. establishment and fluvial landform construction: biogeomorphic dynamics within a channelized river

    Get PDF
    International audiencePopulations of the riparian pioneer species Populus nigra L. which establish on alluvial bars within river channelsmodulate sediment dynamics and fluvial landforms. Dense cohorts of P. nigra have colonized gravel point bars along the channelizedRiver Garonne, France, during the last 20 years and have enhanced the vertical, lateral and longitudinal development of thebars. For this period, the geomorphic characteristics of two wooded point bars on this laterally stable river are closely linked tothe spatial distribution and intensity of establishment and resistance of different cohorts of P. nigra. Furthermore, P. nigra colonizationdynamics were controlled by engineer effects of this same species. This relationship is illustrated by a significant correlation betweenkey geomorphic and biological variables measured in situ and characterized with a set of four aerial photographs taken between2000 and 2010. The development of wooded point bars, which are discrete biogeomorphic units, over the studied period, appearto result from a specific biogeomorphic positive feedback of matter aggregation and vegetation establishment related to sedimenttrapping and stabilization by pioneer engineer plants.We propose a conceptual model of biogeomorphic unit construction for channelized,lateral stable rivers.We consider the resultant biogeomorphic units as functional from an ecological point of view because P.nigra enhances at the cohort scale (i) its own inherent capacity to resist hydrogeomorphic disturbances, and (ii) its resilience capacityas a result of successful colonization, especially downstream of mature poplar stands

    Study on 17 β-estradiol removal in wastewater by advanced treatment and evalution of feasibility and economic benefit for various continuous-flow treatment technologies

    No full text
    近年來內分泌干擾物質(EDCs)隨著環境檢驗技術提升,發現濃度極其微量即具生物影響力,雌二醇(17β-estradiol, E2)為EDCs 之一,屬於天然雌激素中具高度內分泌干擾活性者,其結構特殊且濃度極微量,使污水處理場傳統處理程序無法有效處理,因此轉而使用高級處理希冀能將此低濃度EDCs去除。本研究使用混凝沉澱、活性碳吸附、高級氧化處理(UVC/H2O2、UVA/TiO2)等高級處理程序,將E2分別以批次實驗、連續進流操作、單元排列組合,探討物化處理單元對E2之去除率與經濟效益評估。 本研究中,批次實驗發現混凝沉澱對E2去除效果不佳;粒狀活性碳(GAC)吸附,以初始濃度10 μM、劑量2 g/L吸附24小時殘餘率可達0.6 %,且符合Langmuir等溫吸附模式;UVC/H2O2於過氧化氫濃度0.05 mM以上,可在20分鐘內完全降解E2;UVA/TiO2光催化降解則於4小時實驗時間內,可達最低E2殘餘率為67 %;連續進流實驗以1.5~10.3 μM範圍的E2溶液時,上流式活性碳吸附塔(GAC Tower)出流水E2殘餘率皆在0.8 %以下;UVC/H2O2光氧化降解E2,出流水濃度皆低於最小偵測極限;UVA/TiO2則需較長之反應時間使E2質傳於光觸媒表面並氧化而去除,殘餘率皆在70 %以上。單元串聯結果顯示以GAC Tower搭配UVC/H2O2的兩種組合具最佳去除效果,出流水E2濃度皆為ND;GAC Tower搭配UVA/TiO2的組合出流水濃度界於0.1~0.7 μM,處理效果較差且觸媒光催化降解E2所占的比例不高,以活性碳吸附為主要去除作用;經濟效益評估以單一UVC/H2O2氧化單元耗費最少成本並可達良好去除效果,但無法排除出流水中E2降解副產物對環境的影響;但若加以串聯GAC Tower,雖花費較高,但藉吸附塔之能力,可能吸附去除E2降解副產物,降低環境承受水體之負荷。In recent years, with vast improvements in the field of analytical chemistry technology, it is found that trace levels of Endocrine Disrupting Chemicals (EDCs) can have adverse effects on human health as well as wildlife. 17β-estradiol (E2) falls under the category of EDCs and has been reported to cause potent estrogenic activity even at low concentrations. Due to its chemical structure and low concentrations in the environment, conventional wastewater treatment plants (WTPs) are not able to break it down. Thus, this study aims to reduce E2 concentrations via advanced treatment technology. Coagulation, adsorption by granular activated carbon (GAC) and advanced oxidation methods were used in this study, respectively, to find out how each method removes E2 from wastewater. Continuous-flow experiments, series connections and variation in the series connection were the most significant in this research. In addition, the removal efficiency and cost-effectiveness were also evaluated. Coagulation showed little effect on removing E2. Batch experiments with initial E2 concentrations of 10 μM and GAC concentrations at 2 g/L, at a contact time of 24 hours, the residual percent of E2 dropped to 0.6%. The adsorption process follows the Langmuir isotherm. There was no residual E2 concentrations when the UVC/H2O2 method was employed under 20 minutes. UVC/H2O2 photo-oxidized E2 to concentrations lower than the detection limit. After 4 hours of photocatalysis, E2 ended up with a residual percent of 67%. A lower removal efficiency is due to a slower reaction rate. For continuous flow experiments of individual units, the influent E2 concentrations ranged from 1.5 μM to 10.3 μM. After adsorptoin by the GAC tower, E2 residual percent fell bellow 0.8%. E2 removal by the UVC/H2O2 method, concentrations were not detectable. In the UVA/TiO2 process, residual E2 percentages were higher than 70%. This lower removal efficiency also resulted from a slower reation rate. A series connection of the GAC tower and UVC/H2O2 method yielded the highest removal efficiency. Effluent concentrations of E2 were not detectable. After treatment by series connection of a GAC tower and UVA/TiO2, effluent E2 concentrations ranged from 0.1 μM to 0.7μM. But, adsorption was the primary method of removal. In the evaluation of feasibility and cost-effectiveness, the UVC/H2O2 method cost the least. Although at higher costs, UVC/H2O2 connected with the GAC tower has the ability to adsorb byproducts of post-photoxidation and reduce the impact on waterbodies.摘要 i Abstact ii 目錄 iv 圖目錄 vi 表目錄 viii 第一章 緒論 1 第二章 文獻回顧 3 2-1環境荷爾蒙 3 2-1-1環境荷爾蒙概述 3 2-1-2環境荷爾蒙分類及影響性 4 2-2雌二醇 5 2-2-1雌二醇概述 5 2-2-2雌二醇的影響 7 2-2-3雌二醇廢水處理技術 7 2-3高級處理技術 10 2-3-1混凝沉澱 10 2-3-2活性碳吸附 11 2-3-3高級氧化處理 14 2-4連續進流處理單元 19 2-4-1活性碳吸附塔簡介 19 2-4-2完全混合反應槽簡介 21 第三章 材料與方法 23 3-1 實驗內容與方法 23 3-1-1批次實驗 23 3-1-2各單元連續進流操作實驗 27 3-1-3單元排列組合測試 30 3-1-4單元處理經濟效益評估 33 3-2實驗藥品 34 3-3實驗設備及分析儀器 35 3-3-1批次實驗 35 3-3-2連續進流操作實驗 35 3-3-3固定態TiO2玻璃載體製備方法 36 3-3-4實驗設備 37 3-3-5樣品分析儀器 37 3-4 分析項目 38 3-4-1螢光光譜分析 38 3-4-2比表面積測定儀 39 3-4-3等溫吸附模式 40 3-4-4光催化動力模式 42 第四章 結果與討論 44 4-1高級處理批次式實驗 44 4-1-1混凝沉澱 44 4-1-2粒狀活性碳吸附 45 4-1-3 UVC/H2O2光氧化程序 51 4-1-4 UVA/TiO2光催化程序 54 4-2 各單元連續進流操作實驗 58 4-2-1上流式活性碳吸附塔 58 4-2-2連續進流UVC/H2O2光氧化系統 61 4-2-3連續進流UVA/TiO2光催化試驗 64 4-2-4處理系統比較 67 4-3單元排列組合測試 69 4-3-1 GAC吸附塔串聯UVC/H2O2系統 69 4-3-2 GAC吸附塔串聯UVA/TiO2系統 71 4-3-3 UVC/H2O2系統串聯GAC吸附塔 73 4-3-4 UVA/TiO2系統串聯GAC吸附塔 75 4-3-5四組串聯系統之總比較 77 4-4經濟效益評估 78 第五章 結論與建議 82 5-1 結論 82 5-1-1批次實驗 82 5-1-2連續進流操作實驗 82 5-1-3單元串聯操作實驗 82 5-1-4經濟效益評估 83 5-2 建議 83 參考文獻 84 附錄 9
    corecore