9 research outputs found

    Traumatismo craneoencefálico leve en el departamento de urgencias de pediatría del Hospital de Clínicas de San Lorenzo: características clínico epidemiológicas y frecuencia

    Get PDF
    Introducción: El traumatismo craneoencefálico ocurre comúnmente en la infancia. La mayoría de los traumatismos craneales en niños son leves y no están asociados con lesiones cerebrales o secuelas a largo plazo. Sin embargo, un pequeño número de niños que parecen estar en bajo riesgo puede tener una lesión cerebral traumática clínicamente importante. Objetivo: determinar la frecuencia, características clínicas y epidemiológicas del traumatismo cráneo encefálico leve en el departamento de emergencias pediátricas del hospital de clínicas de San Lorenzo. Materiales y Métodos: estudio observacional, descriptivo, retrospectivo de corte transversal, se incluyeron pacientes menores a 18 años con diagnóstico de Traumatismo craneoencefálico leve que ingresan a sala de observación del Departamento de Urgencias del Hospital de Clínicas desde noviembre del 2017 hasta noviembre del 2019. Resultados: fueron ingresados 55 pacientes con diagnóstico de TCE leve, el 53% del sexo masculino, el 36% pertenecían a lactantes mayores, la mayoría procedían del área metropolitana. En cuanto al mecanismo de traumatismo el 62% fue por caída de propia altura con un promedio de 0,9 ± 0,91 m, el 20% presento pérdida del conocimiento. Todos los pacientes ingresaron al departamento de urgencias vigiles y con un Glasgow 15/15, en cuanto a los hallazgos radiológicos se constató fractura de cráneo en 5% Se realizo estudios de imagen en el 55% de los pacientes en donde más del 60% fueron normales. Conclusión: en pacientes con traumatismo craneoencefálico leve los médicos deben decidir si el paciente se realizará una tomografía en base al juicio clínico y a guías internacionalmente estandarizadas para tal efecto ya que las mismas exponen a radiaciones ionizantes que aumentan los riesgos a largo plazo de neoplasias letales. Esto permite que los niños con riesgo bajo a intermedio no sean expuestos innecesariamente a radiaciones.  Correspondencia: Adriana Leticia Ferreira Pascottini Correo: [email protected] Recibido: 01/11/2020 Aceptado:12/02/202

    Taking care of kidney transplant recipients during the COVID-19 pandemic: experience from a medicalized hotel.

    Get PDF
    The global overload that health systems are undergoing since the start of the COVID-19 pandemic has forced hospitals to explore sustainable alternatives to treat vulnerable patients that require closer monitoring and higher use of resources, such as Kidney Transplant Recipients (KTRs)1,2 .The use of telemedicine and hospital-like infrastructures represent a valid option for most patients with mild-moderate COVID-19, as well as for patients in the recovery phase who cannot be discharged from hospital

    Evaluation of appendicitis risk prediction models in adults with suspected appendicitis

    Get PDF
    Background Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis. Methods A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16–45 years presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis). Results Some 5345 patients across 154 UK hospitals were identified, of which two‐thirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; P < 0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cut‐off score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cut‐off score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent). Conclusion Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decision‐making by identifying adults in the UK at low risk of appendicitis were identified

    Relevance of Nrf2 and heme oxygenase-1 in articular diseases

    Full text link
    [EN] Joint conditions pose an important public health problem as they are a leading cause of pain, functional limitation and physical disability. Oxidative stress is related to the pathogenesis of many chronic diseases affecting the joints such as rheumatoid arthritis and osteoarthritis. Cells have developed adaptive protection mechanisms to maintain homeostasis such as nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) which regulates the transcription of many genes involved in redox balance, detoxification, metabolism and inflammation. Activation of Nrf2 results in the synthesis of heme oxygenase-1 (HO-1) leading to the formation of a number of bioactive metabolites, mainly CO, biliverdin and bilirubin. Ample evidence supports the notion that Nrf2 and HO-1 can confer protection against oxidative stress and inflammatory and immune responses in joint tissues. As a consequence, this pathway may control the activation and metabolism of articular cells to play a regulatory role in joint destruction thus offering new opportunities for better treatments. Further studies are necessary to identify improved strategies to regulate Nrf2 and HO-1 activation in order to enable the development of drugs with therapeutic applications in joint diseases.This work has been funded by grant SAF2017-85806-R (MINECO, FEDER, Spain).Alcaraz Tormo, MJ.; Ferrándiz Manglano, ML. (2020). Relevance of Nrf2 and heme oxygenase-1 in articular diseases. Free Radical Biology and Medicine. 157:83-93. https://doi.org/10.1016/j.freeradbiomed.2019.12.007S8393157Itoh, K., Igarashi, K., Hayashi, N., Nishizawa, M., & Yamamoto, M. (1995). Cloning and characterization of a novel erythroid cell-derived CNC family transcription factor heterodimerizing with the small Maf family proteins. Molecular and Cellular Biology, 15(8), 4184-4193. doi:10.1128/mcb.15.8.4184Tebay, L. E., Robertson, H., Durant, S. T., Vitale, S. R., Penning, T. M., Dinkova-Kostova, A. T., & Hayes, J. D. (2015). Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biology and Medicine, 88, 108-146. doi:10.1016/j.freeradbiomed.2015.06.021Hirotsu, Y., Katsuoka, F., Funayama, R., Nagashima, T., Nishida, Y., Nakayama, K., … Yamamoto, M. (2012). Nrf2–MafG heterodimers contribute globally to antioxidant and metabolic networks. Nucleic Acids Research, 40(20), 10228-10239. doi:10.1093/nar/gks827Ma, Q. (2013). Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53(1), 401-426. doi:10.1146/annurev-pharmtox-011112-140320Cuadrado, A., Manda, G., Hassan, A., Alcaraz, M. J., Barbas, C., Daiber, A., … Schmidt, H. H. H. W. (2018). Transcription Factor NRF2 as a Therapeutic Target for Chronic Diseases: A Systems Medicine Approach. Pharmacological Reviews, 70(2), 348-383. doi:10.1124/pr.117.014753Gozzelino, R., Jeney, V., & Soares, M. P. (2010). Mechanisms of Cell Protection by Heme Oxygenase-1. Annual Review of Pharmacology and Toxicology, 50(1), 323-354. doi:10.1146/annurev.pharmtox.010909.105600Barañano, D. E., Wolosker, H., Bae, B.-I., Barrow, R. K., Snyder, S. H., & Ferris, C. D. (2000). A Mammalian Iron ATPase Induced by Iron. Journal of Biological Chemistry, 275(20), 15166-15173. doi:10.1074/jbc.275.20.15166Wu, L., & Wang, R. (2005). Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacological Reviews, 57(4), 585-630. doi:10.1124/pr.57.4.3Ryter, S. W., & Choi, A. M. K. (2009). Heme Oxygenase-1/Carbon Monoxide. American Journal of Respiratory Cell and Molecular Biology, 41(3), 251-260. doi:10.1165/rcmb.2009-0170trChoi, A. M. K., & Otterbein, L. E. (2002). Emerging Role of Carbon Monoxide in Physiologic and Pathophysiologic States. Antioxidants & Redox Signaling, 4(2), 227-228. doi:10.1089/152308602753666271Alam, J., & Cook, J. L. (2007). How Many Transcription Factors Does It Take to Turn On the Heme Oxygenase-1 Gene? American Journal of Respiratory Cell and Molecular Biology, 36(2), 166-174. doi:10.1165/rcmb.2006-0340trSudan, K., Vijayan, V., Madyaningrana, K., Gueler, F., Igarashi, K., Foresti, R., … Immenschuh, S. (2019). TLR4 activation alters labile heme levels to regulate BACH1 and heme oxygenase-1 expression in macrophages. Free Radical Biology and Medicine, 137, 131-142. doi:10.1016/j.freeradbiomed.2019.04.024Carta, S., Castellani, P., Delfino, L., Tassi, S., Venè, R., & Rubartelli, A. (2009). DAMPs and inflammatory processes: the role of redox in the different outcomes. Journal of Leukocyte Biology, 86(3), 549-555. doi:10.1189/jlb.1008598Afonina, I. S., Zhong, Z., Karin, M., & Beyaert, R. (2017). Limiting inflammation—the negative regulation of NF-κB and the NLRP3 inflammasome. Nature Immunology, 18(8), 861-869. doi:10.1038/ni.3772Barreiro, O., Martin, P., Gonzalez-Amaro, R., & Sanchez-Madrid, F. (2010). Molecular cues guiding inflammatory responses. Cardiovascular Research, 86(2), 174-182. doi:10.1093/cvr/cvq001Soares, M. P., Seldon, M. P., Gregoire, I. P., Vassilevskaia, T., Berberat, P. O., Yu, J., … Bach, F. H. (2004). Heme Oxygenase-1 Modulates the Expression of Adhesion Molecules Associated with Endothelial Cell Activation. The Journal of Immunology, 172(6), 3553-3563. doi:10.4049/jimmunol.172.6.3553Banning, A., & Brigelius-Flohé, R. (2005). NF-κB, Nrf2, and HO-1 Interplay in Redox-Regulated VCAM-1 Expression. Antioxidants & Redox Signaling, 7(7-8), 889-899. doi:10.1089/ars.2005.7.889Freitas, A., Alves-Filho, J. C., Secco, D. D., Neto, A. F., Ferreira, S. H., Barja-Fidalgo, C., & Cunha, F. Q. (2006). Heme oxygenase/carbon monoxide-biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. British Journal of Pharmacology, 149(4), 345-354. doi:10.1038/sj.bjp.0706882Brigelius-Flohé, R., & Flohé, L. (2011). Basic Principles and Emerging Concepts in the Redox Control of Transcription Factors. Antioxidants & Redox Signaling, 15(8), 2335-2381. doi:10.1089/ars.2010.3534Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1863(2), 585-597. doi:10.1016/j.bbadis.2016.11.005Wardyn, J. D., Ponsford, A. H., & Sanderson, C. M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions, 43(4), 621-626. doi:10.1042/bst20150014Alcaraz, M., Fernandez, P., & Guillen, M. (2003). Anti-Inflammatory Actions of the Heme Oxygenase-1 Pathway. Current Pharmaceutical Design, 9(30), 2541-2551. doi:10.2174/1381612033453749Chen, X.-L., Dodd, G., Thomas, S., Zhang, X., Wasserman, M. A., Rovin, B. H., & Kunsch, C. (2006). Activation of Nrf2/ARE pathway protects endothelial cells from oxidant injury and inhibits inflammatory gene expression. American Journal of Physiology-Heart and Circulatory Physiology, 290(5), H1862-H1870. doi:10.1152/ajpheart.00651.2005Keshavan, P., Deem, T. L., Schwemberger, S. J., Babcock, G. F., Cook-Mills, J. M., & Zucker, S. D. (2005). Unconjugated Bilirubin Inhibits VCAM-1-Mediated Transendothelial Leukocyte Migration. The Journal of Immunology, 174(6), 3709-3718. doi:10.4049/jimmunol.174.6.3709Kobayashi, E. H., Suzuki, T., Funayama, R., Nagashima, T., Hayashi, M., Sekine, H., … Yamamoto, M. (2016). Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nature Communications, 7(1). doi:10.1038/ncomms11624Hull, T. D., Agarwal, A., & George, J. F. (2014). The Mononuclear Phagocyte System in Homeostasis and Disease: A Role for Heme Oxygenase-1. Antioxidants & Redox Signaling, 20(11), 1770-1788. doi:10.1089/ars.2013.5673Haschemi, A., Wagner, O., Marculescu, R., Wegiel, B., Robson, S. C., Gagliani, N., … Otterbein, L. E. (2007). Cross-Regulation of Carbon Monoxide and the Adenosine A2a Receptor in Macrophages. The Journal of Immunology, 178(9), 5921-5929. doi:10.4049/jimmunol.178.9.5921Chiang, N., Shinohara, M., Dalli, J., Mirakaj, V., Kibi, M., Choi, A. M. K., & Serhan, C. N. (2013). Inhaled Carbon Monoxide Accelerates Resolution of Inflammation via Unique Proresolving Mediator–Heme Oxygenase-1 Circuits. The Journal of Immunology, 190(12), 6378-6388. doi:10.4049/jimmunol.1202969Cheng, X., He, S., Yuan, J., Miao, S., Gao, H., Zhang, J., … Wu, P. (2016). Lipoxin A4 attenuates LPS-induced mouse acute lung injury via Nrf2-mediated E-cadherin expression in airway epithelial cells. Free Radical Biology and Medicine, 93, 52-66. doi:10.1016/j.freeradbiomed.2016.01.026Goronzy, J. J., & Weyand, C. M. (2009). Developments in the scientific understanding of rheumatoid arthritis. Arthritis Research & Therapy, 11(5), 249. doi:10.1186/ar2758Smallwood, M. J., Nissim, A., Knight, A. R., Whiteman, M., Haigh, R., & Winyard, P. G. (2018). Oxidative stress in autoimmune rheumatic diseases. Free Radical Biology and Medicine, 125, 3-14. doi:10.1016/j.freeradbiomed.2018.05.086Miesel, R., Murphy, M. P., & Kröger, H. (1996). Enhanced Mitochondrial Radical Production in Patients with Rheumatoid Arthritis Correlates with Elevated Levels of Tumor Necrosis Factor alpha in Plasma. Free Radical Research, 25(2), 161-169. doi:10.3109/10715769609149921Biniecka, M., Kennedy, A., Ng, C. T., Chang, T. C., Balogh, E., Fox, E., … O’Sullivan, J. N. (2011). Successful tumour necrosis factor (TNF) blocking therapy suppresses oxidative stress and hypoxia-induced mitochondrial mutagenesis in inflammatory arthritis. Arthritis Research & Therapy, 13(4), R121. doi:10.1186/ar3424Hirao, M., Yamasaki, N., Oze, H., Ebina, K., Nampei, A., Kawato, Y., … Hashimoto, J. (2011). Serum level of oxidative stress marker is dramatically low in patients with rheumatoid arthritis treated with tocilizumab. Rheumatology International, 32(12), 4041-4045. doi:10.1007/s00296-011-2135-0McGarry, T., Orr, C., Wade, S., Biniecka, M., Wade, S., Gallagher, L., … Fearon, U. (2018). JAK/STATBlockade Alters Synovial Bioenergetics, Mitochondrial Function, and Proinflammatory Mediators in Rheumatoid Arthritis. Arthritis & Rheumatology, 70(12), 1959-1970. doi:10.1002/art.40569Firestein, G. S., & McInnes, I. B. (2017). Immunopathogenesis of Rheumatoid Arthritis. Immunity, 46(2), 183-196. doi:10.1016/j.immuni.2017.02.006Burmester, G. R., Feist, E., & Dörner, T. (2013). Emerging cell and cytokine targets in rheumatoid arthritis. Nature Reviews Rheumatology, 10(2), 77-88. doi:10.1038/nrrheum.2013.168Loeser, R. F., Goldring, S. R., Scanzello, C. R., & Goldring, M. B. (2012). Osteoarthritis: A disease of the joint as an organ. Arthritis & Rheumatism, 64(6), 1697-1707. doi:10.1002/art.34453Goldring, M. B., & Marcu, K. B. (2009). Cartilage homeostasis in health and rheumatic diseases. Arthritis Research & Therapy, 11(3), 224. doi:10.1186/ar2592Liu-Bryan, R., & Terkeltaub, R. (2014). Emerging regulators of the inflammatory process in osteoarthritis. Nature Reviews Rheumatology, 11(1), 35-44. doi:10.1038/nrrheum.2014.162Hultqvist, M., Olsson, L. M., Gelderman, K. A., & Holmdahl, R. (2009). The protective role of ROS in autoimmune disease. Trends in Immunology, 30(5), 201-208. doi:10.1016/j.it.2009.03.004Li, J., Stein, T. D., & Johnson, J. A. (2004). Genetic dissection of systemic autoimmune disease in Nrf2-deficient mice. Physiological Genomics, 18(3), 261-272. doi:10.1152/physiolgenomics.00209.2003Morito, N., Yoh, K., Hirayama, A., Itoh, K., Nose, M., Koyama, A., … Takahashi, S. (2004). Nrf2 deficiency improves autoimmune nephritis caused by the fas mutation lpr. Kidney International, 65(5), 1703-1713. doi:10.1111/j.1523-1755.2004.00565.xMa, Q., Battelli, L., & Hubbs, A. F. (2006). Multiorgan Autoimmune Inflammation, Enhanced Lymphoproliferation, and Impaired Homeostasis of Reactive Oxygen Species in Mice Lacking the Antioxidant-Activated Transcription Factor Nrf2. The American Journal of Pathology, 168(6), 1960-1974. doi:10.2353/ajpath.2006.051113Gopal, S., Mikulskis, A., Gold, R., Fox, R. J., Dawson, K. T., & Amaravadi, L. (2017). Evidence of activation of the Nrf2 pathway in multiple sclerosis patients treated with delayed-release dimethyl fumarate in the Phase 3 DEFINE and CONFIRM studies. Multiple Sclerosis Journal, 23(14), 1875-1883. doi:10.1177/1352458517690617Bomprezzi, R. (2015). Dimethyl fumarate in the treatment of relapsing–remitting multiple sclerosis: an overview. Therapeutic Advances in Neurological Disorders, 8(1), 20-30. doi:10.1177/1756285614564152Schulze-Topphoff, U., Varrin-Doyer, M., Pekarek, K., Spencer, C. M., Shetty, A., Sagan, S. A., … Zamvil, S. S. (2016). Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2. Proceedings of the National Academy of Sciences, 113(17), 4777-4782. doi:10.1073/pnas.1603907113Guo, H., Callaway, J. B., & Ting, J. P.-Y. (2015). Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine, 21(7), 677-687. doi:10.1038/nm.3893Guo, C., Fu, R., Wang, S., Huang, Y., Li, X., Zhou, M., … Yang, N. (2018). NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clinical & Experimental Immunology, 194(2), 231-243. doi:10.1111/cei.13167Mathews, R. J., Robinson, J. I., Battellino, M., Wong, C., Taylor, J. C., … Eyre, S. (2013). Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Annals of the Rheumatic Diseases, 73(6), 1202-1210. doi:10.1136/annrheumdis-2013-203276Liu, X., Zhang, X., Ding, Y., Zhou, W., Tao, L., Lu, P., … Hu, R. (2017). Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxidants & Redox Signaling, 26(1), 28-43. doi:10.1089/ars.2015.6615Hennig, P., Garstkiewicz, M., Grossi, S., Di Filippo, M., French, L., & Beer, H.-D. (2018). The Crosstalk between Nrf2 and Inflammasomes. International Journal of Molecular Sciences, 19(2), 562. doi:10.3390/ijms19020562Nagai, N., Thimmulappa, R. K., Cano, M., Fujihara, M., Izumi-Nagai, K., Kong, X., … Handa, J. T. (2009). Nrf2 is a critical modulator of the innate immune response in a model of uveitis. Free Radical Biology and Medicine, 47(3), 300-306. doi:10.1016/j.freeradbiomed.2009.04.033Thimmulappa, R. K. (2006). Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. Journal of Clinical Investigation, 116(4), 984-995. doi:10.1172/jci25790Vijayan, V., Wagener, F. A. D. T. G., & Immenschuh, S. (2018). The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochemical Pharmacology, 153, 159-167. doi:10.1016/j.bcp.2018.02.010Mackern-Oberti, J., Riquelme, S., Llanos, C., Schmidt, C., Simon, T., Anegon, I., … Kalergis, A. (2014). Heme Oxygenase-1 as a Target for the Design of Gene and Pharmaceutical Therapies for Autoimmune Diseases. Current Gene Therapy, 14(3), 218-235. doi:10.2174/1566523214666140424150308Riquelme, S. A., Carreño, L. J., Espinoza, J. A., Mackern-Oberti, J. P., Alvarez-Lobos, M. M., Riedel, C. A., … Kalergis, A. M. (2016). Modulation of antigen processing by haem-oxygenase 1. Implications on inflammation and tolerance. Immunology, 149(1), 1-12. doi:10.1111/imm.12605Thomas, R., MacDonald, K. P. A., Pettit, A. R., Cavanagh, L. L., Padmanabha, J., & Zehntner, S. (1999). Dendritic cells and the pathogenesis of rheumatoid arthritis. Journal of Leukocyte Biology, 66(2), 286-292. doi:10.1002/jlb.66.2.286Yoo, E. J., Lee, H. H., Ye, B. J., Lee, J. H., Lee, C. Y., Kang, H. J., … Choi, S. Y. (2019). TonEBP Suppresses the HO-1 Gene by Blocking Recruitment of Nrf2 to Its Promoter. Frontiers in Immunology, 10. doi:10.3389/fimmu.2019.00850Liang, J., Jahraus, B., Balta, E., Ziegler, J. D., Hübner, K., Blank, N., … Samstag, Y. (2018). Sulforaphane Inhibits Inflammatory Responses of Primary Human T-Cells by Increasing ROS and Depleting Glutathione. Frontiers in Immunology, 9. doi:10.3389/fimmu.2018.02584Kapturczak, M. H., Wasserfall, C., Brusko, T., Campbell-Thompson, M., Ellis, T. M., Atkinson, M. A., & Agarwal, A. (2004). Heme Oxygenase-1 Modulates Early Inflammatory Responses. The American Journal of Pathology, 165(3), 1045-1053. doi:10.1016/s0002-9440(10)63365-2Fan, M., Li, Y., Yao, C., Liu, X., Liu, X., & Liu, J. (2018). Dihydroartemisinin derivative DC32 attenuates collagen-induced arthritis in mice by restoring the Treg/Th17 balance and inhibiting synovitis through down-regulation of IL-6. International Immunopharmacology, 65, 233-243. doi:10.1016/j.intimp.2018.10.015Wu, B., Wu, Y., & Tang, W. (2019). Heme Catabolic Pathway in Inflammation and Immune Disorders. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.00825Ferrandiz, M. L., Maicas, N., Garcia-Arnandis, I., Terencio, M. C., Motterlini, R., Devesa, I., … Alcaraz, M. J. (2007). Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Annals of the Rheumatic Diseases, 67(9), 1211-1217. doi:10.1136/ard.2007.082412Watanabe-Matsui, M., Muto, A., Matsui, T., Itoh-Nakadai, A., Nakajima, O., Murayama, K., … Igarashi, K. (2011). Heme regulates B-cell differentiation, antibody class switch, and heme oxygenase-1 expression in B cells as a ligand of Bach2. Blood, 117(20), 5438-5448. doi:10.1182/blood-2010-07-296483Kong, J.-S., Yoo, S.-A., Kim, H.-S., Kim, H. A., Yea, K., Ryu, S.-H., … Kim, W.-U. (2010). Inhibition of synovial hyperplasia, rheumatoid T cell activation, and experimental arthritis in mice by sulforaphane, a naturally occurring isothiocyanate. Arthritis & Rheumatism, 62(1), 159-170. doi:10.1002/art.25017Hoffmann, M. H., & Griffiths, H. R. (2018). The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radical Biology and Medicine, 125, 62-71. doi:10.1016/j.freeradbiomed.2018.03.016Weyand, C. M., Shen, Y., & Goronzy, J. J. (2018). Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radical Biology and Medicine, 125, 36-43. doi:10.1016/j.freeradbiomed.2018.03.004Rueda, B., Oliver, J., Robledo, G., López-Nevot, M. A., Balsa, A., Pascual-Salcedo, D., … Martín, J. (2007). HO-1promoter polymorphism associated with rheumatoid arthritis. Arthritis & Rheumatism, 56(12), 3953-3958. doi:10.1002/art.23048Wagener, F. A. D. T. G., Toonen, E. J. M., Wigman, L., Fransen, J., Creemers, M. C. W., Radstake, T. R. D. J., … Russel, F. G. M. (2008). HMOX1promoter polymorphism modulates the relationship between disease activity and joint damage in rheumatoid arthritis. Arthritis & Rheumatism, 58(11), 3388-3393. doi:10.1002/art.23970Fox, D. A., Gizinski, A., Morgan, R., & Lundy, S. K. (2010). Cell-cell Interactions in Rheumatoid Arthritis Synovium. Rheumatic Disease Clinics of North America, 36(2), 311-323. doi:10.1016/j.rdc.2010.02.004Noss, E. H., & Brenner, M. B. (2008). The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunological Reviews, 223(1), 252-270. doi:10.1111/j.1600-065x.2008.00648.xFirestein, G. S. (2003). Evolving concepts of rheumatoid arthritis. Nature, 423(6937), 356-361. doi:10.1038/nature01661Filippin, L. I., Vercelino, R., Marroni, N. P., & Xavier, R. M. (2008). Redox signalling and the inflammatory response in rheumatoid arthritis. Clinical & Experimental Immunology, 152(3), 415-422. doi:10.1111/j.1365-2249.2008.03634.xAhmed, U., Thornalley, P. J., & Rabbani, N. (2014). Possible role of methylglyoxal and glyoxalase in arthritis. Biochemical Society Transactions, 42(2), 538-542. doi:10.1042/bst20140024Xue, M., Rabbani, N., Momiji, H., Imbasi, P., Anwar, M. M., Kitteringham, N., … Thornalley, P. J. (2012). Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation. Biochemical Journal, 443(1), 213-222. doi:10.1042/bj20111648Asahara, H., Fujisawa, K., Kobata, T., Hasunuma, T., Maeda, T., Asanuma, M., … Nishioka, K. (1997). Direct evidence of high DNA binding activity of transcription factor AP-1 in rheumatoid arthritis synovium. Arthritis & Rheumatism, 40(5), 912-918. doi:10.1002/art.1780400520Westra, J., Molema, G., & Kallenberg, C. (2010). Hypoxia-Inducible Factor-1 as Regulator of Angiogenesis in Rheumatoid Arthritis - Therapeutic Implications. Current Medicinal Chemistry, 17(3), 254-263. doi:10.2174/092986710790149783Feldmann, M., Brennan, F. M., & Maini, R. N. (1996). Rheumatoid Arthritis. Cell, 85(3), 307-310. doi:10.1016/s0092-8674(00)81109-5Rannou, F., François, M., Corvol, M.-T., & Berenbaum, F. (2006). Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine, 73(1), 29-36. doi:10.1016/j.jbspin.2004.12.013Granet, C., Maslinski, W., & Miossec, P. (2004). Arthritis Research & Therapy, 6(3), R190. doi:10.1186/ar1159Li, X., & Makarov, S. S. (2006). An essential role of NF- B in the «tumor-like» phenotype of arthritic synoviocytes. Proceedings of the National Academy of Sciences, 103(46), 17432-17437. doi:10.1073/pnas.0607939103McGarry, T., Biniecka, M., Veale, D. J., & Fearon, U. (2018). Hypoxia, oxidative stress and inflammation. Free Radical Biology and Medicine, 125, 15-24. doi:10.1016/j.freeradbiomed.2018.03.042Wruck, C. J., Fragoulis, A., Gurzynski, A., Brandenburg, L.-O., Kan, Y. W., Chan, K., … Pufe, T. (2010). Role of oxidative stress in rheumatoid arthritis: insights from the Nrf2-knockout mice. Annals of the Rheumatic Diseases, 70(5), 844-850. doi:10.1136/ard.2010.132720Fragoulis, A., Laufs, J., Müller, S., Soppa, U., Siegl, S., Reiss, L., … Wruck, C. (2012). Sulforaphane has opposing effects on TNF-alpha stimulated an

    Ticagrelor in patients with diabetes and stable coronary artery disease with a history of previous percutaneous coronary intervention (THEMIS-PCI) : a phase 3, placebo-controlled, randomised trial

    No full text
    Background: Patients with stable coronary artery disease and diabetes with previous percutaneous coronary intervention (PCI), particularly those with previous stenting, are at high risk of ischaemic events. These patients are generally treated with aspirin. In this trial, we aimed to investigate if these patients would benefit from treatment with aspirin plus ticagrelor. Methods: The Effect of Ticagrelor on Health Outcomes in diabEtes Mellitus patients Intervention Study (THEMIS) was a phase 3 randomised, double-blinded, placebo-controlled trial, done in 1315 sites in 42 countries. Patients were eligible if 50 years or older, with type 2 diabetes, receiving anti-hyperglycaemic drugs for at least 6 months, with stable coronary artery disease, and one of three other mutually non-exclusive criteria: a history of previous PCI or of coronary artery bypass grafting, or documentation of angiographic stenosis of 50% or more in at least one coronary artery. Eligible patients were randomly assigned (1:1) to either ticagrelor or placebo, by use of an interactive voice-response or web-response system. The THEMIS-PCI trial comprised a prespecified subgroup of patients with previous PCI. The primary efficacy outcome was a composite of cardiovascular death, myocardial infarction, or stroke (measured in the intention-to-treat population). Findings: Between Feb 17, 2014, and May 24, 2016, 11 154 patients (58% of the overall THEMIS trial) with a history of previous PCI were enrolled in the THEMIS-PCI trial. Median follow-up was 3·3 years (IQR 2·8–3·8). In the previous PCI group, fewer patients receiving ticagrelor had a primary efficacy outcome event than in the placebo group (404 [7·3%] of 5558 vs 480 [8·6%] of 5596; HR 0·85 [95% CI 0·74–0·97], p=0·013). The same effect was not observed in patients without PCI (p=0·76, p interaction=0·16). The proportion of patients with cardiovascular death was similar in both treatment groups (174 [3·1%] with ticagrelor vs 183 (3·3%) with placebo; HR 0·96 [95% CI 0·78–1·18], p=0·68), as well as all-cause death (282 [5·1%] vs 323 [5·8%]; 0·88 [0·75–1·03], p=0·11). TIMI major bleeding occurred in 111 (2·0%) of 5536 patients receiving ticagrelor and 62 (1·1%) of 5564 patients receiving placebo (HR 2·03 [95% CI 1·48–2·76], p<0·0001), and fatal bleeding in 6 (0·1%) of 5536 patients with ticagrelor and 6 (0·1%) of 5564 with placebo (1·13 [0·36–3·50], p=0·83). Intracranial haemorrhage occurred in 33 (0·6%) and 31 (0·6%) patients (1·21 [0·74–1·97], p=0·45). Ticagrelor improved net clinical benefit: 519/5558 (9·3%) versus 617/5596 (11·0%), HR=0·85, 95% CI 0·75–0·95, p=0·005, in contrast to patients without PCI where it did not, p interaction=0·012. Benefit was present irrespective of time from most recent PCI. Interpretation: In patients with diabetes, stable coronary artery disease, and previous PCI, ticagrelor added to aspirin reduced cardiovascular death, myocardial infarction, and stroke, although with increased major bleeding. In that large, easily identified population, ticagrelor provided a favourable net clinical benefit (more than in patients without history of PCI). This effect shows that long-term therapy with ticagrelor in addition to aspirin should be considered in patients with diabetes and a history of PCI who have tolerated antiplatelet therapy, have high ischaemic risk, and low bleeding risk

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present
    corecore